These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 17996862

  • 1. Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain-hindbrain boundary region.
    Ikuta T, Saiga H.
    Dev Biol; 2007 Dec 15; 312(2):631-43. PubMed ID: 17996862
    [Abstract] [Full Text] [Related]

  • 2. Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development.
    Takahashi T, Holland PW.
    Development; 2004 Jul 15; 131(14):3285-94. PubMed ID: 15201221
    [Abstract] [Full Text] [Related]

  • 3. A Gbx homeobox gene in amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary.
    Castro LF, Rasmussen SL, Holland PW, Holland ND, Holland LZ.
    Dev Biol; 2006 Jul 01; 295(1):40-51. PubMed ID: 16687133
    [Abstract] [Full Text] [Related]

  • 4. Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system.
    Imai KS, Stolfi A, Levine M, Satou Y.
    Development; 2009 Jan 01; 136(2):285-93. PubMed ID: 19088089
    [Abstract] [Full Text] [Related]

  • 5. The evolutionary origins of vertebrate midbrain and MHB: insights from mouse, amphioxus and ascidian Dmbx homeobox genes.
    Takahashi T.
    Brain Res Bull; 2005 Sep 15; 66(4-6):510-7. PubMed ID: 16144640
    [Abstract] [Full Text] [Related]

  • 6. Regulatory gene expressions in the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate hypothalamus.
    Moret F, Christiaen L, Deyts C, Blin M, Vernier P, Joly JS.
    Dev Biol; 2005 Jan 15; 277(2):567-79. PubMed ID: 15617694
    [Abstract] [Full Text] [Related]

  • 7. Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain.
    Cañestro C, Bassham S, Postlethwait J.
    Dev Biol; 2005 Sep 15; 285(2):298-315. PubMed ID: 16111672
    [Abstract] [Full Text] [Related]

  • 8. A procephalic territory in Drosophila exhibiting similarities and dissimilarities compared to the vertebrate midbrain/hindbrain boundary region.
    Urbach R.
    Neural Dev; 2007 Nov 05; 2():23. PubMed ID: 17983473
    [Abstract] [Full Text] [Related]

  • 9. Sp8 controls the anteroposterior patterning at the midbrain-hindbrain border.
    Griesel G, Treichel D, Collombat P, Krull J, Zembrzycki A, van den Akker WM, Gruss P, Simeone A, Mansouri A.
    Development; 2006 May 05; 133(9):1779-87. PubMed ID: 16571633
    [Abstract] [Full Text] [Related]

  • 10. Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis.
    Ikuta T, Satoh N, Saiga H.
    Development; 2010 May 05; 137(9):1505-13. PubMed ID: 20335361
    [Abstract] [Full Text] [Related]

  • 11. Region specific gene expressions in the central nervous system of the ascidian embryo.
    Imai KS, Satoh N, Satou Y.
    Mech Dev; 2002 Dec 05; 119 Suppl 1():S275-7. PubMed ID: 14516697
    [Abstract] [Full Text] [Related]

  • 12. Differential and dose-dependent regulation of gene expression at the mid-hindbrain boundary by Ras-MAP kinase signaling.
    Vennemann A, Agoston Z, Schulte D.
    Brain Res; 2008 Apr 24; 1206():33-43. PubMed ID: 18343356
    [Abstract] [Full Text] [Related]

  • 13. Effects of the azole fungicide Imazalil on the development of the ascidian Ciona intestinalis (Chordata, Tunicata): morphological and molecular characterization of the induced phenotype.
    Zega G, De Bernardi F, Groppelli S, Pennati R.
    Aquat Toxicol; 2009 Feb 19; 91(3):255-61. PubMed ID: 19124165
    [Abstract] [Full Text] [Related]

  • 14. Developmental expression and transcriptional regulation of Ci-Pans, a novel neural marker gene of the ascidian, Ciona intestinalis.
    Alfano C, Teresa Russo M, Spagnuolo A.
    Gene; 2007 Dec 30; 406(1-2):36-41. PubMed ID: 17616447
    [Abstract] [Full Text] [Related]

  • 15. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain.
    Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S.
    Development; 2004 Mar 30; 131(5):983-95. PubMed ID: 14973269
    [Abstract] [Full Text] [Related]

  • 16. Organization of Hox genes in ascidians: present, past, and future.
    Ikuta T, Saiga H.
    Dev Dyn; 2005 Jun 30; 233(2):382-9. PubMed ID: 15844201
    [Abstract] [Full Text] [Related]

  • 17. Genomic organization and promoter and transcription regulatory regions for the expression in the anterior brain (sensory vesicle) of Hroth, the otx homologue of the ascidian, Halocynthia roretzi.
    Oda-Ishii I, Saiga H.
    Dev Dyn; 2003 May 30; 227(1):104-13. PubMed ID: 12701103
    [Abstract] [Full Text] [Related]

  • 18. Large-scale characterization of genes specific to the larval nervous system in the ascidian Ciona intestinalis.
    Mochizuki Y, Satou Y, Satoh N.
    Genesis; 2003 May 30; 36(1):62-71. PubMed ID: 12748968
    [Abstract] [Full Text] [Related]

  • 19. Mechanism of hyperthermia effects on CNS development: rostral gene expression domains remain, despite severe head truncation; and the hindbrain/otocyst relationship is altered.
    Buckiová D, Brown NA.
    Teratology; 1999 Mar 30; 59(3):139-47. PubMed ID: 10194804
    [Abstract] [Full Text] [Related]

  • 20. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development.
    Ikuta T, Yoshida N, Satoh N, Saiga H.
    Proc Natl Acad Sci U S A; 2004 Oct 19; 101(42):15118-23. PubMed ID: 15469921
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.