These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 18002896

  • 1. Estimation of speed distribution of particles moving in an optically turbid medium using decomposition of a laser-Doppler spectrum.
    Liebert A, Zołek N, Wojtkiewicz S, Maniewski R.
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4080-2. PubMed ID: 18002896
    [Abstract] [Full Text] [Related]

  • 2. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A, Zołek N, Maniewski R.
    Phys Med Biol; 2006 Nov 21; 51(22):5737-51. PubMed ID: 17068362
    [Abstract] [Full Text] [Related]

  • 3. Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium.
    Wojtkiewicz S, Liebert A, Rix H, Zołek N, Maniewski R.
    Phys Med Biol; 2009 Feb 07; 54(3):679-97. PubMed ID: 19131674
    [Abstract] [Full Text] [Related]

  • 4. Estimation of scattering phase function utilizing laser Doppler power density spectra.
    Wojtkiewicz S, Liebert A, Rix H, Sawosz P, Maniewski R.
    Phys Med Biol; 2013 Feb 21; 58(4):937-55. PubMed ID: 23340453
    [Abstract] [Full Text] [Related]

  • 5. Doppler Monte Carlo simulations of light scattering in tissue to support laser-Doppler perfusion measurements.
    de Mul FF, Steenbergen W, Greve J.
    Technol Health Care; 1999 Feb 21; 7(2-3):171-83. PubMed ID: 10463306
    [Abstract] [Full Text] [Related]

  • 6. Assessment of speed distribution of red blood cells in the microvascular network in healthy volunteers and type 1 diabetes using laser Doppler spectra decomposition.
    Wojtkiewicz S, Wojcik-Sosnowska E, Jasik M, Maniewski R, Karnafel W, Liebert A.
    Physiol Meas; 2014 Feb 21; 35(2):283-95. PubMed ID: 24434915
    [Abstract] [Full Text] [Related]

  • 7. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density.
    Wojtkiewicz S, Liebert A, Rix H, Maniewski R.
    Phys Med Biol; 2011 Dec 21; 56(24):7709-23. PubMed ID: 22085805
    [Abstract] [Full Text] [Related]

  • 8. Validation of speed-resolved laser Doppler perfusion in a multimodal optical system using a blood-flow phantom.
    Jonasson H, Fredriksson I, Larsson M, Strömberg T.
    J Biomed Opt; 2019 Sep 21; 24(9):1-8. PubMed ID: 31512441
    [Abstract] [Full Text] [Related]

  • 9. Toward a velocity-resolved microvascular blood flow measure by decomposition of the laser Doppler spectrum.
    Larsson M, Strömberg T.
    J Biomed Opt; 2006 Sep 21; 11(1):014024. PubMed ID: 16526901
    [Abstract] [Full Text] [Related]

  • 10. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation.
    Mowla A, Taimre T, Lim YL, Bertling K, Wilson SJ, Prow TW, Soyer HP, Rakić AD.
    Sensors (Basel); 2016 Sep 01; 16(9):. PubMed ID: 27598157
    [Abstract] [Full Text] [Related]

  • 11. On the equivalence and differences between laser Doppler flowmetry and laser speckle contrast analysis.
    Fredriksson I, Larsson M.
    J Biomed Opt; 2016 Dec 01; 21(12):126018. PubMed ID: 28008449
    [Abstract] [Full Text] [Related]

  • 12. Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry.
    Varghese B, Rajan V, Van Leeuwen TG, Steenbergen W.
    Opt Express; 2010 Feb 01; 18(3):2849-57. PubMed ID: 20174114
    [Abstract] [Full Text] [Related]

  • 13. Non-invasive determination of muscle blood flow in the extremities from laser Doppler spectra.
    Kienle A.
    Phys Med Biol; 2001 Apr 01; 46(4):1231-44. PubMed ID: 11324962
    [Abstract] [Full Text] [Related]

  • 14. Numerical simulation of light propagation and scattering in turbid biological media.
    Lopatin VV, Pnezzhev AV, Fedoseev VV.
    Crit Rev Biomed Eng; 2001 Apr 01; 29(3):400-19. PubMed ID: 11730101
    [Abstract] [Full Text] [Related]

  • 15. Influence of optical properties and fiber separation on laser doppler flowmetry.
    Larsson M, Steenbergen W, Strömberg T.
    J Biomed Opt; 2002 Apr 01; 7(2):236-43. PubMed ID: 11966309
    [Abstract] [Full Text] [Related]

  • 16. Influence of light source-detector spacing on shape of probability density functions of scattering angles in laser Doppler flowmetry.
    Binzoni T, Martelli F.
    Appl Opt; 2014 Jul 10; 53(20):4580-4. PubMed ID: 25090080
    [Abstract] [Full Text] [Related]

  • 17. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry.
    Fredriksson I, Burdakov O, Larsson M, Strömberg T.
    J Biomed Opt; 2013 Dec 10; 18(12):127004. PubMed ID: 24352692
    [Abstract] [Full Text] [Related]

  • 18. Laser Doppler perfusion imaging by dynamic light scattering.
    Wårdell K, Jakobsson A, Nilsson GE.
    IEEE Trans Biomed Eng; 1993 Apr 10; 40(4):309-16. PubMed ID: 8375866
    [Abstract] [Full Text] [Related]

  • 19. On generalized photocurrent spectral moments and the recovery of speed distribution in laser Doppler flowmetry.
    Zhong J, Nilsson G.
    IEEE Trans Biomed Eng; 1993 Jun 10; 40(6):595-7. PubMed ID: 8262543
    [Abstract] [Full Text] [Related]

  • 20. Random numbers free analytical implementation of Monte Carlo for laser-Doppler flowmetry at large interoptode spacing: application to human bone tissue.
    Binzoni T, Martelli F.
    Appl Opt; 2015 Mar 20; 54(9):2400-6. PubMed ID: 25968528
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.