These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 18008303
1. A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Liu YJ, Guo SS, Zhang ZL, Huang WH, Baigl D, Xie M, Chen Y, Pang DW. Electrophoresis; 2007 Dec; 28(24):4713-22. PubMed ID: 18008303 [Abstract] [Full Text] [Related]
2. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH, Hsiung SK, Chen CY, Tsai ML, Lee GB. Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [Abstract] [Full Text] [Related]
3. A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Zhang K, Zhao LB, Guo SS, Shi BX, Lam TL, Leung YC, Chen Y, Zhao XZ, Chan HL, Wang Y. Biosens Bioelectron; 2010 Oct 15; 26(2):935-9. PubMed ID: 20638834 [Abstract] [Full Text] [Related]
4. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE. Biomed Microdevices; 2006 Dec 15; 8(4):299-308. PubMed ID: 17003962 [Abstract] [Full Text] [Related]
5. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Sung JH, Shuler ML. Biomed Microdevices; 2009 Aug 15; 11(4):731-8. PubMed ID: 19212816 [Abstract] [Full Text] [Related]
6. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody. Taguchi T, Arakaki A, Takeyama H, Haraguchi S, Yoshino M, Kaneko M, Ishimori Y, Matsunaga T. Biotechnol Bioeng; 2007 Feb 01; 96(2):272-80. PubMed ID: 16917954 [Abstract] [Full Text] [Related]
8. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Du Z, Cheng KH, Vaughn MW, Collie NL, Gollahon LS. Biomed Microdevices; 2007 Feb 21; 9(1):35-42. PubMed ID: 17103049 [Abstract] [Full Text] [Related]
9. Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems. Lien KY, Chuang YH, Hung LY, Hsu KF, Lai WW, Ho CL, Chou CY, Lee GB. Lab Chip; 2010 Nov 07; 10(21):2875-86. PubMed ID: 20927448 [Abstract] [Full Text] [Related]
10. Fully integrated miniature device for automated gene expression DNA microarray processing. Liu RH, Nguyen T, Schwarzkopf K, Fuji HS, Petrova A, Siuda T, Peyvan K, Bizak M, Danley D, McShea A. Anal Chem; 2006 Mar 15; 78(6):1980-6. PubMed ID: 16536436 [Abstract] [Full Text] [Related]
11. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting. Chen P, Feng X, Hu R, Sun J, Du W, Liu BF. Anal Chim Acta; 2010 Mar 17; 663(1):1-6. PubMed ID: 20172088 [Abstract] [Full Text] [Related]
12. Selective capture of a specific cell type from mixed leucocytes in an electrode-integrated microfluidic device. Hashimoto M, Kaji H, Nishizawa M. Biosens Bioelectron; 2009 May 15; 24(9):2892-7. PubMed ID: 19321334 [Abstract] [Full Text] [Related]
15. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lettieri GL, Dodge A, Boer G, de Rooij NF, Verpoorte E. Lab Chip; 2003 Feb 15; 3(1):34-9. PubMed ID: 15100803 [Abstract] [Full Text] [Related]