These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME, Hu JG, Belenky M, Verdegem P, Lugtenburg J, Griffin RG, Herzfeld J. Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [Abstract] [Full Text] [Related]
25. Coupling of retinal isomerization to the activation of rhodopsin. Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO. Proc Natl Acad Sci U S A; 2004 Jul 06; 101(27):10048-53. PubMed ID: 15220479 [Abstract] [Full Text] [Related]
27. Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Helmle M, Patzelt H, Ockenfels A, Gärtner W, Oesterhelt D, Bechinger B. Biochemistry; 2000 Aug 22; 39(33):10066-71. PubMed ID: 10955994 [Abstract] [Full Text] [Related]
28. Insight into the chromophore of rhodopsin and its Meta-II photointermediate by 19F solid-state NMR and chemical shift tensor calculations. Brinkmann A, Sternberg U, Bovee-Geurts PHM, Fernández Fernández I, Lugtenburg J, Kentgens APM, DeGrip WJ. Phys Chem Chem Phys; 2018 Dec 12; 20(48):30174-30188. PubMed ID: 30484791 [Abstract] [Full Text] [Related]
31. Low-temperature solid-state 13C NMR studies of the retinal chromophore in rhodopsin. Smith SO, Palings I, Copié V, Raleigh DP, Courtin J, Pardoen JA, Lugtenburg J, Mathies RA, Griffin RG. Biochemistry; 1987 Mar 24; 26(6):1606-11. PubMed ID: 3593680 [Abstract] [Full Text] [Related]
32. NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. Han M, Smith SO. Biochemistry; 1995 Jan 31; 34(4):1425-32. PubMed ID: 7827090 [Abstract] [Full Text] [Related]
33. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y, Bezerra AG, Waschuk S, Sumii M, Brown LS, Kandori H. Biochemistry; 2004 Aug 03; 43(30):9636-46. PubMed ID: 15274618 [Abstract] [Full Text] [Related]
37. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR, Einterz CM, Knapp HM, Murray LP. Biophys J; 1988 Mar 03; 53(3):367-85. PubMed ID: 2964878 [Abstract] [Full Text] [Related]
38. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. Han M, Groesbeek M, Sakmar TP, Smith SO. Proc Natl Acad Sci U S A; 1997 Dec 09; 94(25):13442-7. PubMed ID: 9391044 [Abstract] [Full Text] [Related]
39. (1)H and (13)C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Creemers AF, Kiihne S, Bovee-Geurts PH, DeGrip WJ, Lugtenburg J, de Groot HJ. Proc Natl Acad Sci U S A; 2002 Jul 09; 99(14):9101-6. PubMed ID: 12093898 [Abstract] [Full Text] [Related]
40. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. Crocker E, Eilers M, Ahuja S, Hornak V, Hirshfeld A, Sheves M, Smith SO. J Mol Biol; 2006 Mar 17; 357(1):163-72. PubMed ID: 16414074 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]