These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 18022394
1. SIT4 regulation of Mig1p-mediated catabolite repression in Saccharomyces cerevisiae. Jin C, Barrientos A, Epstein CB, Butow RA, Tzagoloff A. FEBS Lett; 2007 Dec 11; 581(29):5658-63. PubMed ID: 18022394 [Abstract] [Full Text] [Related]
2. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Ostling J, Ronne H. Eur J Biochem; 1998 Feb 15; 252(1):162-8. PubMed ID: 9523726 [Abstract] [Full Text] [Related]
3. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Ye T, Elbing K, Hohmann S. Microbiology (Reading); 2008 Sep 15; 154(Pt 9):2814-2826. PubMed ID: 18757815 [Abstract] [Full Text] [Related]
4. The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. Smith FC, Davies SP, Wilson WA, Carling D, Hardie DG. FEBS Lett; 1999 Jun 18; 453(1-2):219-23. PubMed ID: 10403407 [Abstract] [Full Text] [Related]
5. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae. Verma M, Bhat PJ, Venkatesh KV. Biochem J; 2005 Jun 15; 388(Pt 3):843-9. PubMed ID: 15698380 [Abstract] [Full Text] [Related]
6. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression. Prasad V, Venkatesh KV. BMC Syst Biol; 2008 Nov 17; 2():97. PubMed ID: 19014615 [Abstract] [Full Text] [Related]
7. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Hu Z, Nehlin JO, Ronne H, Michels CA. Curr Genet; 1995 Aug 17; 28(3):258-66. PubMed ID: 8529272 [Abstract] [Full Text] [Related]
8. Snf1p/Hxk2p/Mig1p pathway regulates hexose transporters transcript levels, affecting the exponential growth and mitochondrial respiration of Saccharomyces cerevisiae. Carrillo-Garmendia A, Martinez-Ortiz C, Martinez-Garfias JG, Suarez-Sandoval SE, González-Hernández JC, Nava GM, Dufoo-Hurtado MD, Madrigal-Perez LA. Fungal Genet Biol; 2022 Jul 17; 161():103701. PubMed ID: 35526810 [Abstract] [Full Text] [Related]
9. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Proft M, Serrano R. Mol Cell Biol; 1999 Jan 17; 19(1):537-46. PubMed ID: 9858577 [Abstract] [Full Text] [Related]
10. The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Shirra MK, Rogers SE, Alexander DE, Arndt KM. Genetics; 2005 Apr 17; 169(4):1957-72. PubMed ID: 15716495 [Abstract] [Full Text] [Related]
11. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Vallier LG, Carlson M. Genetics; 1994 May 17; 137(1):49-54. PubMed ID: 8056322 [Abstract] [Full Text] [Related]
12. The serine/threonine protein phosphatase Sit4p activates multidrug resistance in Saccharomyces cerevisiae. Miranda MN, Masuda CA, Ferreira-Pereira A, Carvajal E, Ghislain M, Montero-Lomelí M. FEMS Yeast Res; 2010 Sep 17; 10(6):674-86. PubMed ID: 20608983 [Abstract] [Full Text] [Related]
13. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. Shashkova S, Wollman AJM, Leake MC, Hohmann S. FEMS Microbiol Lett; 2017 Aug 01; 364(14):. PubMed ID: 28854669 [Abstract] [Full Text] [Related]
14. Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity. Ostling J, Cassart JP, Vandenhaute J, Ronne H. Mol Gen Genet; 1998 Nov 01; 260(2-3):269-79. PubMed ID: 9862481 [Abstract] [Full Text] [Related]
15. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Zaragoza O, Vincent O, Gancedo JM. Biochem J; 2001 Oct 01; 359(Pt 1):193-201. PubMed ID: 11563983 [Abstract] [Full Text] [Related]
16. Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1. González A, Ruiz A, Casamayor A, Ariño J. Mol Cell Biol; 2009 May 01; 29(10):2876-88. PubMed ID: 19273591 [Abstract] [Full Text] [Related]
17. The ceramide-activated protein phosphatase Sit4p controls lifespan, mitochondrial function and cell cycle progression by regulating hexokinase 2 phosphorylation. Barbosa AD, Pereira C, Osório H, Moradas-Ferreira P, Costa V. Cell Cycle; 2016 Jun 17; 15(12):1620-30. PubMed ID: 27163342 [Abstract] [Full Text] [Related]
18. MIG1-dependent and MIG1-independent regulation of GAL gene expression in Saccharomyces cerevisiae: role of Imp2p. Alberti A, Lodi T, Ferrero I, Donnini C. Yeast; 2003 Oct 15; 20(13):1085-96. PubMed ID: 14558142 [Abstract] [Full Text] [Related]
19. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. Papamichos-Chronakis M, Gligoris T, Tzamarias D. EMBO Rep; 2004 Apr 15; 5(4):368-72. PubMed ID: 15031717 [Abstract] [Full Text] [Related]
20. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M. PLoS Genet; 2015 Jan 15; 11(1):e1004968. PubMed ID: 25629410 [Abstract] [Full Text] [Related] Page: [Next] [New Search]