These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 18022801
1. Immobilization of NaIO4-treated heparin on PEG-modified 316L SS surface for high anti-thrombin-III binding. Chuang TW, Lin DT, Lin FH. J Biomed Mater Res A; 2008 Sep; 86(3):648-61. PubMed ID: 18022801 [Abstract] [Full Text] [Related]
2. Preparation and surface characterization of HMDI-activated 316L stainless steel for coronary artery stents. Chuang TW, Chen MH, Lin FH. J Biomed Mater Res A; 2008 Jun 01; 85(3):722-30. PubMed ID: 17896759 [Abstract] [Full Text] [Related]
3. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Yang Z, Wang J, Luo R, Maitz MF, Jing F, Sun H, Huang N. Biomaterials; 2010 Mar 01; 31(8):2072-83. PubMed ID: 20022107 [Abstract] [Full Text] [Related]
4. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents. Bayram C, Mizrak AK, Aktürk S, Kurşaklioğlu H, Iyisoy A, Ifran A, Denkbaş EB. Biomed Mater; 2010 Oct 01; 5(5):055007. PubMed ID: 20844318 [Abstract] [Full Text] [Related]
5. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Chen H, Chen Y, Sheardown H, Brook MA. Biomaterials; 2005 Dec 01; 26(35):7418-24. PubMed ID: 16051347 [Abstract] [Full Text] [Related]
6. Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Huang LY, Yang MC. Colloids Surf B Biointerfaces; 2008 Jan 15; 61(1):43-52. PubMed ID: 17720460 [Abstract] [Full Text] [Related]
8. The use of alkanethiol self-assembled monolayers on 316L stainless steel for coronary artery stent nanomedicine applications: an oxidative and in vitro stability study. Mahapatro A, Johnson DM, Patel DN, Feldman MD, Ayon AA, Agrawal CM. Nanomedicine; 2006 Sep 15; 2(3):182-90. PubMed ID: 17292141 [Abstract] [Full Text] [Related]
9. Mechanism of thrombin inactivation by immobilized heparin. Byun Y, Jacobs HA, Kim SW. J Biomed Mater Res; 1996 Apr 15; 30(4):423-7. PubMed ID: 8847350 [Abstract] [Full Text] [Related]
10. Interaction of heparin with polyallylamine-immobilized surfaces. Ma X, Mohammad SF, Kim SW. J Biomed Mater Res; 1993 Mar 15; 27(3):357-65. PubMed ID: 8360205 [Abstract] [Full Text] [Related]
11. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Chen H, Hu X, Zhang Y, Li D, Wu Z, Zhang T. Colloids Surf B Biointerfaces; 2008 Feb 15; 61(2):237-43. PubMed ID: 17920250 [Abstract] [Full Text] [Related]
12. Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion. Tanaka Y, Matsuo Y, Komiya T, Tsutsumi Y, Doi H, Yoneyama T, Hanawa T. J Biomed Mater Res A; 2010 Jan 15; 92(1):350-8. PubMed ID: 19189389 [Abstract] [Full Text] [Related]
13. Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility. Li G, Zhang F, Liao Y, Yang P, Huang N. Colloids Surf B Biointerfaces; 2010 Nov 01; 81(1):255-62. PubMed ID: 20692134 [Abstract] [Full Text] [Related]
14. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A. Biomaterials; 2005 Jun 01; 26(17):3495-502. PubMed ID: 15621239 [Abstract] [Full Text] [Related]