These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


900 related items for PubMed ID: 18026090

  • 41. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer R.
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [Abstract] [Full Text] [Related]

  • 42. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X, Li D, Gao N, Shi Q, Hou H.
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [Abstract] [Full Text] [Related]

  • 43. Piezo- and solenoid valve-based liquid dispensing for miniaturized assays.
    Niles WD, Coassin PJ.
    Assay Drug Dev Technol; 2005 Apr; 3(2):189-202. PubMed ID: 15871693
    [Abstract] [Full Text] [Related]

  • 44. Development of a renal microchip for in vitro distal tubule models.
    Baudoin R, Griscom L, Monge M, Legallais C, Leclerc E.
    Biotechnol Prog; 2007 Apr; 23(5):1245-53. PubMed ID: 17725364
    [Abstract] [Full Text] [Related]

  • 45. Low O2 metabolism of HepG2 cells cultured at high density in a 3D microstructured scaffold.
    Provin C, Takano K, Yoshida T, Sakai Y, Fujii T, Shirakashi R.
    Biomed Microdevices; 2009 Apr; 11(2):485-94. PubMed ID: 19082898
    [Abstract] [Full Text] [Related]

  • 46. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.
    Hufnagel H, Huebner A, Gülch C, Güse K, Abell C, Hollfelder F.
    Lab Chip; 2009 Jun 07; 9(11):1576-82. PubMed ID: 19458865
    [Abstract] [Full Text] [Related]

  • 47. Design and simulation of active biochip system.
    Zhu W, Zhu W, Zhang W, Han F, Dong X, Yan X.
    Biomed Microdevices; 2005 Jun 07; 7(2):157-60. PubMed ID: 15940432
    [Abstract] [Full Text] [Related]

  • 48. Microfabricated platform for studying stem cell fates.
    Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN.
    Biotechnol Bioeng; 2004 Nov 05; 88(3):399-415. PubMed ID: 15486946
    [Abstract] [Full Text] [Related]

  • 49. Microfluidics/CMOS orthogonal capabilities for cell biology.
    Linder V, Koster S, Franks W, Kraus T, Verpoorte E, Heer F, Hierlemann A, de Rooij NF.
    Biomed Microdevices; 2006 Jun 05; 8(2):159-66. PubMed ID: 16688575
    [Abstract] [Full Text] [Related]

  • 50. Live cells-based cytotoxic sensorchip fabricated in a microfluidic system.
    Wada K, Taniguchi A, Kobayashi J, Yamato M, Okano T.
    Biotechnol Bioeng; 2008 Apr 15; 99(6):1513-7. PubMed ID: 18080341
    [Abstract] [Full Text] [Related]

  • 51. Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor.
    De Bartolo L, Salerno S, Morelli S, Giorno L, Rende M, Memoli B, Procino A, Andreucci VE, Bader A, Drioli E.
    Biomaterials; 2006 Sep 15; 27(27):4794-803. PubMed ID: 16753210
    [Abstract] [Full Text] [Related]

  • 52. Cell micropatterning inside a microchannel and assays under a stable concentration gradient.
    Okuyama T, Yamazoe H, Seto Y, Suzuki H, Fukuda J.
    J Biosci Bioeng; 2010 Aug 15; 110(2):230-7. PubMed ID: 20547384
    [Abstract] [Full Text] [Related]

  • 53. Microfabricated arrays of femtoliter chambers allow single molecule enzymology.
    Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S, Noji H.
    Nat Biotechnol; 2005 Mar 15; 23(3):361-5. PubMed ID: 15723045
    [Abstract] [Full Text] [Related]

  • 54. Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network.
    Huang H, Oizumi S, Kojima N, Niino T, Sakai Y.
    Biomaterials; 2007 Sep 15; 28(26):3815-23. PubMed ID: 17544499
    [Abstract] [Full Text] [Related]

  • 55. MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems.
    Choi Y, Vukasinovic J, Glezer A, Allen MG.
    Biomed Microdevices; 2008 Jun 15; 10(3):437-46. PubMed ID: 18214683
    [Abstract] [Full Text] [Related]

  • 56. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay.
    Sugiura S, Edahiro J, Kikuchi K, Sumaru K, Kanamori T.
    Biotechnol Bioeng; 2008 Aug 15; 100(6):1156-65. PubMed ID: 18553395
    [Abstract] [Full Text] [Related]

  • 57. Thin-film IrOx pH microelectrode for microfluidic-based microsystems.
    Ges IA, Ivanov BL, Schaffer DK, Lima EA, Werdich AA, Baudenbacher FJ.
    Biosens Bioelectron; 2005 Aug 15; 21(2):248-56. PubMed ID: 16023951
    [Abstract] [Full Text] [Related]

  • 58. Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring.
    Prasad S, Quijano J.
    Biosens Bioelectron; 2006 Jan 15; 21(7):1219-29. PubMed ID: 15990287
    [Abstract] [Full Text] [Related]

  • 59. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems.
    Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E.
    Lab Chip; 2004 Dec 15; 4(6):563-9. PubMed ID: 15570366
    [Abstract] [Full Text] [Related]

  • 60. Perfusion culture of mammalian cells in a microfluidic channel with a built-in pillar array.
    Zhang C.
    Methods Mol Biol; 2012 Dec 15; 853():83-94. PubMed ID: 22323142
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 45.