These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
408 related items for PubMed ID: 18028427
1. Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L). Müller A, Janssen F, Grieshaber MK. FEBS J; 2007 Dec; 274(24):6329-39. PubMed ID: 18028427 [Abstract] [Full Text] [Related]
2. A structural basis for substrate selectivity and stereoselectivity in octopine dehydrogenase from Pecten maximus. Smits SH, Mueller A, Schmitt L, Grieshaber MK. J Mol Biol; 2008 Aug 01; 381(1):200-11. PubMed ID: 18599075 [Abstract] [Full Text] [Related]
3. Identification of octopine dehydrogenase from Mytilus galloprovincialis. Vázquez-Dorado S, Sanjuan A, Comesaña AS, de Carlos A. Comp Biochem Physiol B Biochem Mol Biol; 2011 Oct 01; 160(2-3):94-103. PubMed ID: 21791249 [Abstract] [Full Text] [Related]
4. Control of D-octopine formation in scallop adductor muscle as revealed through thermodynamic studies of octopine dehydrogenase. van Os N, Smits SH, Schmitt L, Grieshaber MK. J Exp Biol; 2012 May 01; 215(Pt 9):1515-22. PubMed ID: 22496288 [Abstract] [Full Text] [Related]
5. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P, Colman RF. Arch Biochem Biophys; 2002 May 01; 401(1):81-90. PubMed ID: 12054490 [Abstract] [Full Text] [Related]
6. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD. Biochemistry; 2006 Oct 17; 45(41):12470-9. PubMed ID: 17029402 [Abstract] [Full Text] [Related]
8. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Cho H, Hamza A, Zhan CG, Tai HH. Arch Biochem Biophys; 2005 Jan 15; 433(2):447-53. PubMed ID: 15581601 [Abstract] [Full Text] [Related]
9. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF, Wang SC, Massiah MA, Poelarends GJ, Whitman CP, Mildvan AS. Biochemistry; 2004 Apr 13; 43(14):4082-91. PubMed ID: 15065850 [Abstract] [Full Text] [Related]
10. Characterization of an arginine:pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1. Yang Z, Lu CD. J Bacteriol; 2007 Jun 13; 189(11):3954-9. PubMed ID: 17416668 [Abstract] [Full Text] [Related]
11. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE, Liu D, Rao GS, Harris BG, Cook PF. Biochemistry; 2005 Mar 08; 44(9):3626-35. PubMed ID: 15736972 [Abstract] [Full Text] [Related]
12. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites. Karsten WE, Pais JE, Rao GS, Harris BG, Cook PF. Biochemistry; 2003 Aug 19; 42(32):9712-21. PubMed ID: 12911313 [Abstract] [Full Text] [Related]
13. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M, Chen X, Wu XH, Chen M, Wu YD, Guo Z. Biochemistry; 2009 Jul 28; 48(29):6921-31. PubMed ID: 19545176 [Abstract] [Full Text] [Related]
14. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme. Hung HC, Chien YC, Hsieh JY, Chang GG, Liu GY. Biochemistry; 2005 Sep 27; 44(38):12737-45. PubMed ID: 16171388 [Abstract] [Full Text] [Related]
15. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains. Uda K, Yamamoto K, Iwasaki N, Iwai M, Fujikura K, Ellington WR, Suzuki T. Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct 27; 151(2):176-82. PubMed ID: 18639645 [Abstract] [Full Text] [Related]
16. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase. Barber MJ, Quinn GB. Protein Expr Purif; 2001 Nov 27; 23(2):348-58. PubMed ID: 11676611 [Abstract] [Full Text] [Related]
17. Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from Lactobacillus bulgaricus. Razeto A, Kochhar S, Hottinger H, Dauter M, Wilson KS, Lamzin VS. J Mol Biol; 2002 Apr 19; 318(1):109-19. PubMed ID: 12054772 [Abstract] [Full Text] [Related]
18. Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Raffaelli N, Finaurini L, Mazzola F, Pucci L, Sorci L, Amici A, Magni G. Biochemistry; 2004 Jun 15; 43(23):7610-7. PubMed ID: 15182203 [Abstract] [Full Text] [Related]
19. Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile. Krungkrai SR, Aoki S, Palacpac NM, Sato D, Mitamura T, Krungkrai J, Horii T. Mol Biochem Parasitol; 2004 Apr 15; 134(2):245-55. PubMed ID: 15003844 [Abstract] [Full Text] [Related]
20. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase. Wickramasinghe S, Uda K, Nagataki M, Yatawara L, Rajapakse RP, Watanabe Y, Suzuki T, Agatsuma T. Exp Parasitol; 2007 Oct 15; 117(2):124-32. PubMed ID: 17574244 [Abstract] [Full Text] [Related] Page: [Next] [New Search]