These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
358 related items for PubMed ID: 18032820
1. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Zhou GS, Su ZY, Cai YR, Liu YK, Dai LC, Tang RK, Zhang M. Biomed Mater Eng; 2007; 17(6):387-95. PubMed ID: 18032820 [Abstract] [Full Text] [Related]
2. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW. Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177 [Abstract] [Full Text] [Related]
3. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Liu Y, Wang G, Cai Y, Ji H, Zhou G, Zhao X, Tang R, Zhang M. J Biomed Mater Res A; 2009 Sep 15; 90(4):1083-91. PubMed ID: 18671263 [Abstract] [Full Text] [Related]
4. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT, Liao HT, Kuo CY, Wong CB, Li CJ, P A M, Chen JP. Mater Sci Eng C Mater Biol Appl; 2019 Nov 15; 104():109855. PubMed ID: 31500067 [Abstract] [Full Text] [Related]
5. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. Biomed Mater Eng; 2017 Nov 15; 28(6):671-685. PubMed ID: 29171970 [Abstract] [Full Text] [Related]
6. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Liu H, Xu GW, Wang YF, Zhao HS, Xiong S, Wu Y, Heng BC, An CR, Zhu GH, Xie DH. Biomaterials; 2015 May 15; 49():103-12. PubMed ID: 25725559 [Abstract] [Full Text] [Related]
8. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes. Wang J, Yang Q, Mao C, Zhang S. J Biomed Mater Res A; 2012 Nov 15; 100(11):2929-38. PubMed ID: 22700033 [Abstract] [Full Text] [Related]
9. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, Wang L. Mol Med Rep; 2017 Oct 15; 16(4):5078-5084. PubMed ID: 28849142 [Abstract] [Full Text] [Related]
10. The effects of platelet-rich plasma on the osteogenic induction of bone marrow mesenchymal stem cells. Zou J, Yuan C, Wu C, Cao C, Yang H. Connect Tissue Res; 2014 Aug 15; 55(4):304-9. PubMed ID: 24874552 [Abstract] [Full Text] [Related]
11. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R. ACS Appl Mater Interfaces; 2015 May 13; 7(18):9399-409. PubMed ID: 25893690 [Abstract] [Full Text] [Related]
12. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B, Wan YZ, Tang TT, Gao C, Dai KR. Tissue Eng Part A; 2009 May 13; 15(5):1091-8. PubMed ID: 19196148 [Abstract] [Full Text] [Related]
13. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. Bhuiyan DB, Middleton JC, Tannenbaum R, Wick TM. J Biomater Sci Polym Ed; 2016 Aug 13; 27(11):1139-54. PubMed ID: 27120980 [Abstract] [Full Text] [Related]
14. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX, Zhang XF, Wang YY, Ortiz L, Mao X, Jiang ZL, Xiao ZD, Huang NP. ACS Appl Mater Interfaces; 2013 Jan 23; 5(2):319-30. PubMed ID: 23267692 [Abstract] [Full Text] [Related]
15. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X, Yin X, Yang D, Tan J, Liu G. Tissue Eng Part C Methods; 2012 Jul 23; 18(7):545-56. PubMed ID: 22250840 [Abstract] [Full Text] [Related]
16. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Ongaro A, Pellati A, Bagheri L, Fortini C, Setti S, De Mattei M. Bioelectromagnetics; 2014 Sep 23; 35(6):426-36. PubMed ID: 25099126 [Abstract] [Full Text] [Related]
17. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T. Regen Med; 2015 Sep 23; 10(5):579-90. PubMed ID: 26237702 [Abstract] [Full Text] [Related]
18. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. Guang LG, Boskey AL, Zhu W. Int J Biochem Cell Biol; 2013 Aug 23; 45(8):1813-20. PubMed ID: 23742988 [Abstract] [Full Text] [Related]