These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


660 related items for PubMed ID: 18033302

  • 1. Identification of a mechanism of photoprotective energy dissipation in higher plants.
    Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R.
    Nature; 2007 Nov 22; 450(7169):575-8. PubMed ID: 18033302
    [Abstract] [Full Text] [Related]

  • 2. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP, Ruban AV.
    Plant J; 2010 Jan 22; 61(2):283-9. PubMed ID: 19843315
    [Abstract] [Full Text] [Related]

  • 3. Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching.
    Horton P, Wentworth M, Ruban A.
    FEBS Lett; 2005 Aug 15; 579(20):4201-6. PubMed ID: 16051219
    [Abstract] [Full Text] [Related]

  • 4. Molecular basis of photoprotection and control of photosynthetic light-harvesting.
    Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A.
    Nature; 2005 Jul 07; 436(7047):134-7. PubMed ID: 16001075
    [Abstract] [Full Text] [Related]

  • 5. Light absorption by the chlorophyll a-b complexes of photosystem II in a leaf with special reference to LHCII.
    Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC.
    Photochem Photobiol; 2004 Jul 07; 80(3):492-8. PubMed ID: 15623336
    [Abstract] [Full Text] [Related]

  • 6. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E, Cinque G, Bassi R.
    J Mol Biol; 2001 Dec 14; 314(5):1157-66. PubMed ID: 11743731
    [Abstract] [Full Text] [Related]

  • 7. Induction of efficient energy dissipation in the isolated light-harvesting complex of Photosystem II in the absence of protein aggregation.
    Ilioaia C, Johnson MP, Horton P, Ruban AV.
    J Biol Chem; 2008 Oct 24; 283(43):29505-12. PubMed ID: 18728016
    [Abstract] [Full Text] [Related]

  • 8. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes.
    Wentworth M, Ruban AV, Horton P.
    Biochemistry; 2004 Jan 20; 43(2):501-9. PubMed ID: 14717605
    [Abstract] [Full Text] [Related]

  • 9. Carotenoid cation formation and the regulation of photosynthetic light harvesting.
    Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR.
    Science; 2005 Jan 21; 307(5708):433-6. PubMed ID: 15662017
    [Abstract] [Full Text] [Related]

  • 10. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties.
    Betterle N, Ballottari M, Hienerwadel R, Dall'Osto L, Bassi R.
    Arch Biochem Biophys; 2010 Dec 01; 504(1):67-77. PubMed ID: 20494647
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop.
    Belgio E, Duffy CD, Ruban AV.
    Phys Chem Chem Phys; 2013 Aug 07; 15(29):12253-61. PubMed ID: 23771239
    [Abstract] [Full Text] [Related]

  • 13. Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity.
    Johnson MP, Zia A, Ruban AV.
    Planta; 2012 Jan 07; 235(1):193-204. PubMed ID: 21866345
    [Abstract] [Full Text] [Related]

  • 14. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.
    Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR.
    Science; 2008 May 09; 320(5877):794-7. PubMed ID: 18467588
    [Abstract] [Full Text] [Related]

  • 15. Kinetic modeling of charge-transfer quenching in the CP29 minor complex.
    Cheng YC, Ahn TK, Avenson TJ, Zigmantas D, Niyogi KK, Ballottari M, Bassi R, Fleming GR.
    J Phys Chem B; 2008 Oct 23; 112(42):13418-23. PubMed ID: 18826191
    [Abstract] [Full Text] [Related]

  • 16. A new, unquenched intermediate of LHCII.
    Li F, Liu C, Streckaite S, Yang C, Xu P, Llansola-Portoles MJ, Ilioaia C, Pascal AA, Croce R, Robert B.
    J Biol Chem; 2021 Oct 23; 296():100322. PubMed ID: 33493515
    [Abstract] [Full Text] [Related]

  • 17. Light-driven regulatory mechanisms in the photosynthetic antenna complex LHCII.
    Gruszecki WI.
    Biochem Soc Trans; 2010 Apr 23; 38(2):702-4. PubMed ID: 20298246
    [Abstract] [Full Text] [Related]

  • 18. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts.
    Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson PA.
    Biochemistry; 2007 Oct 02; 46(39):11169-76. PubMed ID: 17845010
    [Abstract] [Full Text] [Related]

  • 19. Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study.
    Gruszecki WI, Gospodarek M, Grudziński W, Mazur R, Gieczewska K, Garstka M.
    J Phys Chem B; 2009 Feb 26; 113(8):2506-12. PubMed ID: 19191715
    [Abstract] [Full Text] [Related]

  • 20. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana.
    Kouril R, Zygadlo A, Arteni AA, de Wit CD, Dekker JP, Jensen PE, Scheller HV, Boekema EJ.
    Biochemistry; 2005 Aug 23; 44(33):10935-40. PubMed ID: 16101276
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.