These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sirtuin1 in tracheal aspirate leukocytes: possible role in the development of bronchopulmonary dysplasia in premature infants. Mody K, Saslow JG, Kathiravan S, Eydelman R, Bhat V, Stahl GE, Pyon K, Bhandari V, Aghai ZH. J Matern Fetal Neonatal Med; 2012 Aug; 25(8):1483-7. PubMed ID: 22272724 [Abstract] [Full Text] [Related]
3. IFN-γ and IP-10 in tracheal aspirates from premature infants: relationship with bronchopulmonary dysplasia. Aghai ZH, Saslow JG, Mody K, Eydelman R, Bhat V, Stahl G, Pyon K, Bhandari V. Pediatr Pulmonol; 2013 Jan; 48(1):8-13. PubMed ID: 22431160 [Abstract] [Full Text] [Related]
4. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome. Thomas W, Seidenspinner S, Kramer BW, Wirbelauer J, Kawczyńska-Leda N, Szymankiewicz M, Speer CP. Pediatr Pulmonol; 2011 Aug; 46(8):777-84. PubMed ID: 21337734 [Abstract] [Full Text] [Related]
5. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, Poole K, National Institutes of Child Health and Human Development Neonatal Research Network. Pediatrics; 2005 Dec; 116(6):1353-60. PubMed ID: 16322158 [Abstract] [Full Text] [Related]
6. Respiratory burst activity in bronchopulmonary dysplasia and changes with dexamethasone. Ballabh P, Simm M, Kumari J, Califano C, Aghai Z, Laborada G, Sison C, Cunningham-Rundles S. Pediatr Pulmonol; 2003 May; 35(5):392-9. PubMed ID: 12687597 [Abstract] [Full Text] [Related]
7. Pepsin, a marker of gastric contents, is increased in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Farhath S, He Z, Nakhla T, Saslow J, Soundar S, Camacho J, Stahl G, Shaffer S, Mehta DI, Aghai ZH. Pediatrics; 2008 Feb; 121(2):e253-9. PubMed ID: 18245400 [Abstract] [Full Text] [Related]
8. Interleukin-4 and 13 concentrations in infants at risk to develop Bronchopulmonary Dysplasia. Baier RJ, Loggins J, Kruger TE. BMC Pediatr; 2003 Aug 18; 3():8. PubMed ID: 12925236 [Abstract] [Full Text] [Related]
9. High-mobility group box-1 protein in tracheal aspirates from premature infants: relationship with bronchopulmonary dysplasia and steroid therapy. Aghai ZH, Saslow JG, Meniru C, Porter C, Eydelman R, Bhat V, Stahl G, Sannoh S, Pyon K, Hewitt C, Bhandari V. J Perinatol; 2010 Sep 18; 30(9):610-5. PubMed ID: 20182437 [Abstract] [Full Text] [Related]
10. Exposure to oxygen and head growth in infants with bronchopulmonary dysplasia. Nesterenko TH, Nolan B, Hammad TA, Aly H. Am J Perinatol; 2008 Apr 18; 25(4):251-4. PubMed ID: 18548401 [Abstract] [Full Text] [Related]
11. Time-related changes in steroid use and bronchopulmonary dysplasia in preterm infants. Yoder BA, Harrison M, Clark RH. Pediatrics; 2009 Aug 18; 124(2):673-9. PubMed ID: 19620192 [Abstract] [Full Text] [Related]
12. Interleukin-10 -1082 G/A polymorphism and risk of death or bronchopulmonary dysplasia in ventilated very low birth weight infants. Yanamandra K, Boggs P, Loggins J, Baier RJ. Pediatr Pulmonol; 2005 May 18; 39(5):426-32. PubMed ID: 15678510 [Abstract] [Full Text] [Related]
13. Evidence of early adrenal insufficiency in babies who develop bronchopulmonary dysplasia. Watterberg KL, Scott SM. Pediatrics; 1995 Jan 18; 95(1):120-5. PubMed ID: 7770288 [Abstract] [Full Text] [Related]
14. Increased interleukin-8 and monocyte chemoattractant protein-1 concentrations in mechanically ventilated preterm infants with pulmonary hemorrhage. Baier RJ, Loggins J, Kruger TE. Pediatr Pulmonol; 2002 Aug 18; 34(2):131-7. PubMed ID: 12112780 [Abstract] [Full Text] [Related]
15. Below median birth weight in appropriate-for-gestational-age preterm infants as a risk factor for bronchopulmonary dysplasia. Kewitz G, Wudel S, Hopp H, Hopfenmüller W, Vogel M, Roots I. J Perinat Med; 2008 Aug 18; 36(4):359-64. PubMed ID: 18598128 [Abstract] [Full Text] [Related]
16. PCO2 and room air saturation values in premature infants at risk for bronchopulmonary dysplasia. Kaempf JW, Campbell B, Brown A, Bowers K, Gallegos R, Goldsmith JP. J Perinatol; 2008 Jan 18; 28(1):48-54. PubMed ID: 18033306 [Abstract] [Full Text] [Related]
17. Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. Lassus P, Heikkilä P, Andersson LC, von Boguslawski K, Andersson S. J Pediatr; 2003 Aug 18; 143(2):199-202. PubMed ID: 12970632 [Abstract] [Full Text] [Related]
18. CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE. Pediatr Pulmonol; 2004 Feb 18; 37(2):137-48. PubMed ID: 14730659 [Abstract] [Full Text] [Related]
19. Impaired growth at birth and bronchopulmonary dysplasia classification: beyond small for gestational age. Nyp MF, Taylor JB, Norberg M, Truog WE. Am J Perinatol; 2015 Jan 18; 32(1):75-82. PubMed ID: 24839148 [Abstract] [Full Text] [Related]
20. Is the new definition of bronchopulmonary dysplasia more useful? Sahni R, Ammari A, Suri MS, Milisavljevic V, Ohira-Kist K, Wung JT, Polin RA. J Perinatol; 2005 Jan 18; 25(1):41-6. PubMed ID: 15538399 [Abstract] [Full Text] [Related] Page: [Next] [New Search]