These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
203 related items for PubMed ID: 18036542
1. The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides. Mendel S, McCarthy A, Barnett JP, Eijlander RT, Nenninger A, Kuipers OP, Robinson C. J Mol Biol; 2008 Jan 18; 375(3):661-72. PubMed ID: 18036542 [Abstract] [Full Text] [Related]
2. The Bacillus subtilis TatAdCd system exhibits an extreme level of substrate selectivity. Frain KM, Jones AS, Schoner R, Walker KL, Robinson C. Biochim Biophys Acta Mol Cell Res; 2017 Jan 18; 1864(1):202-208. PubMed ID: 27984091 [Abstract] [Full Text] [Related]
3. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli. Albiniak AM, Matos CF, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C. FEBS J; 2013 Aug 18; 280(16):3810-21. PubMed ID: 23745597 [Abstract] [Full Text] [Related]
4. The twin-arginine translocation (Tat) systems from Bacillus subtilis display a conserved mode of complex organization and similar substrate recognition requirements. Barnett JP, van der Ploeg R, Eijlander RT, Nenninger A, Mendel S, Rozeboom R, Kuipers OP, van Dijl JM, Robinson C. FEBS J; 2009 Jan 18; 276(1):232-43. PubMed ID: 19049517 [Abstract] [Full Text] [Related]
5. A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. Barnett JP, Eijlander RT, Kuipers OP, Robinson C. J Biol Chem; 2008 Feb 01; 283(5):2534-42. PubMed ID: 18029357 [Abstract] [Full Text] [Related]
6. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Buchanan G, Sargent F, Berks BC, Palmer T. Arch Microbiol; 2001 Dec 01; 177(1):107-12. PubMed ID: 11797051 [Abstract] [Full Text] [Related]
7. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. Pop OI, Westermann M, Volkmer-Engert R, Schulz D, Lemke C, Schreiber S, Gerlach R, Wetzker R, Müller JP. J Biol Chem; 2003 Oct 03; 278(40):38428-36. PubMed ID: 12867413 [Abstract] [Full Text] [Related]
8. Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis. Eijlander RT, Kolbusz MA, Berendsen EM, Kuipers OP. Microbiology (Reading); 2009 Jun 03; 155(Pt 6):1776-1785. PubMed ID: 19383693 [Abstract] [Full Text] [Related]
9. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T. J Mol Biol; 2008 Jan 18; 375(3):595-603. PubMed ID: 18054046 [Abstract] [Full Text] [Related]
10. Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. Robinson C, Matos CF, Beck D, Ren C, Lawrence J, Vasisht N, Mendel S. Biochim Biophys Acta; 2011 Mar 18; 1808(3):876-84. PubMed ID: 21126506 [Abstract] [Full Text] [Related]
11. High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis. van der Ploeg R, Monteferrante CG, Piersma S, Barnett JP, Kouwen TR, Robinson C, van Dijl JM. Appl Environ Microbiol; 2012 Nov 18; 78(21):7733-44. PubMed ID: 22923407 [Abstract] [Full Text] [Related]
12. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding. Ulfig A, Freudl R. J Biol Chem; 2018 May 11; 293(19):7281-7299. PubMed ID: 29593092 [Abstract] [Full Text] [Related]
13. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase. Huang Q, Palmer T. mBio; 2017 Aug 01; 8(4):. PubMed ID: 28765221 [Abstract] [Full Text] [Related]
14. Salt sensitivity of minimal twin arginine translocases. van der Ploeg R, Barnett JP, Vasisht N, Goosens VJ, Pöther DC, Robinson C, van Dijl JM. J Biol Chem; 2011 Dec 23; 286(51):43759-43770. PubMed ID: 22041895 [Abstract] [Full Text] [Related]
15. A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. Oertel D, Schmitz S, Freudl R. PLoS One; 2015 Dec 23; 10(4):e0123413. PubMed ID: 25837592 [Abstract] [Full Text] [Related]
16. Two minimal Tat translocases in Bacillus. Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM. Mol Microbiol; 2004 Dec 23; 54(5):1319-25. PubMed ID: 15554971 [Abstract] [Full Text] [Related]
17. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. Lausberg F, Fleckenstein S, Kreutzenbeck P, Fröbel J, Rose P, Müller M, Freudl R. PLoS One; 2012 Dec 23; 7(6):e39867. PubMed ID: 22761916 [Abstract] [Full Text] [Related]
18. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, Berks BC, Palmer T. Proc Natl Acad Sci U S A; 2017 Mar 07; 114(10):E1958-E1967. PubMed ID: 28223511 [Abstract] [Full Text] [Related]
19. Transport of Folded Proteins by the Tat System. Frain KM, Robinson C, van Dijl JM. Protein J; 2019 Aug 07; 38(4):377-388. PubMed ID: 31401776 [Abstract] [Full Text] [Related]
20. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. Stanley NR, Palmer T, Berks BC. J Biol Chem; 2000 Apr 21; 275(16):11591-6. PubMed ID: 10766774 [Abstract] [Full Text] [Related] Page: [Next] [New Search]