These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


266 related items for PubMed ID: 180387

  • 1. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores].
    Shadi A, Mansurova SE, Tsydendambaev VD, Kulaev IS.
    Mikrobiologiia; 1976; 45(2):333-6. PubMed ID: 180387
    [Abstract] [Full Text] [Related]

  • 2. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ, Fisher RR.
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [Abstract] [Full Text] [Related]

  • 3. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N, Yoshimura S, Higuti T, Nishikawa K, Horio T.
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract] [Full Text] [Related]

  • 4. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU, Bachofen R.
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract] [Full Text] [Related]

  • 5. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW, Yang HS, Tannenbaum SR, Archer MC.
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [Abstract] [Full Text] [Related]

  • 6. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation.
    Nishikawa K, Hosoi K, Suzuki J, Yoshimura S, Horio T.
    J Biochem; 1973 Mar; 73(3):537-53. PubMed ID: 4353266
    [No Abstract] [Full Text] [Related]

  • 7. The dibromothymoquinone effect on membrane potential generation in Rhodospirillum rubrum chromatophores.
    Oleskin AV, Samuilov VD.
    Membr Biochem; 1983 Mar; 5(1):77-95. PubMed ID: 6316108
    [Abstract] [Full Text] [Related]

  • 8. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T, Nishikawa K, Yamashita J.
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [Abstract] [Full Text] [Related]

  • 9. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum.
    Keister DL, Raveed NJ.
    J Biol Chem; 1974 Oct 25; 249(20):6454-8. PubMed ID: 4371026
    [No Abstract] [Full Text] [Related]

  • 10. Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores.
    Gromet-Elhanan Z.
    Eur J Biochem; 1972 Jan 31; 25(1):84-8. PubMed ID: 4623434
    [No Abstract] [Full Text] [Related]

  • 11. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum].
    Remennikov VG, Samuilov VD.
    Biokhimiia; 1980 Jul 31; 45(7):1298-304. PubMed ID: 6783130
    [Abstract] [Full Text] [Related]

  • 12. ATP synthesis driven by inorganic pyrophosphate in Rhodospirillum rubrum chromatophores.
    Keister DL, Minton NJ.
    Biochem Biophys Res Commun; 1971 Mar 05; 42(5):932-9. PubMed ID: 4324839
    [No Abstract] [Full Text] [Related]

  • 13. Light-induced electron transfer, internal and external hydrogen ion changes, and phosphorylation in chromatophores of Rhodospirillum rubrum.
    Nishimura M, Kadota K, Chance B.
    Arch Biochem Biophys; 1968 Apr 05; 125(1):308-17. PubMed ID: 5655426
    [No Abstract] [Full Text] [Related]

  • 14. [Role of inorganic pyrophosphate in the cell bioenergetics (author's transl)].
    Masłowski P, Kowalczyk S.
    Postepy Biochem; 1981 Apr 05; 27(2):147-56. PubMed ID: 6121321
    [No Abstract] [Full Text] [Related]

  • 15. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L, Sybesma C.
    Biochim Biophys Acta; 1976 Dec 06; 449(3):565-80. PubMed ID: 11818
    [Abstract] [Full Text] [Related]

  • 16. Effect of aurovertin on energy transfer reactions in Rhodospirillum rubrum chromatophores.
    Ravizzini RA, Lescano WI, Vallejos RH.
    FEBS Lett; 1975 Oct 15; 58(1):285-8. PubMed ID: 131702
    [No Abstract] [Full Text] [Related]

  • 17. Light-induced dark [32P]adenosine triphosphate formation by Rhodospirillum rubrum chromatophores. Adenosine triphosphate-inorganic phosphate exchange activity.
    Zaugg WS, Vernon LP.
    Biochemistry; 1966 Jan 15; 5(1):34-40. PubMed ID: 5938951
    [No Abstract] [Full Text] [Related]

  • 18. Competition between Pi and pH indicators in photosynthetic ATP formation in chromatophores of Rhodospirillum rubrum.
    Hosoi K, Yoshimura S, Soe G, Kakuno T, Horio T.
    J Biochem; 1973 Dec 15; 74(6):1275-8. PubMed ID: 4205462
    [No Abstract] [Full Text] [Related]

  • 19. [Dicyclohexylcarbodiimide as an inhibitor of light- and pyrophosphate-induced formation of membrane potential in chromatophores of purple bacteria].
    Pototskiĭ NIa, Samuilov VD.
    Biokhimiia; 1983 Aug 15; 48(8):1235-40. PubMed ID: 6414533
    [Abstract] [Full Text] [Related]

  • 20. Role of ubiquinone-10 in electron transport system of chromatophores from Rhodospirillum rubrum.
    Higuti T, Erabi T, Kakuno T, Horio T.
    J Biochem; 1975 Jul 15; 78(1):51-6. PubMed ID: 172493
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.