These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


489 related items for PubMed ID: 18041759

  • 1. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B, Reulecke I, Kämper A, Rarey M.
    Proteins; 2008 May 15; 71(3):1237-54. PubMed ID: 18041759
    [Abstract] [Full Text] [Related]

  • 2. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML, Cole JC, Watson P, Gillet V, Willett P.
    J Mol Biol; 2001 Mar 30; 307(3):841-59. PubMed ID: 11273705
    [Abstract] [Full Text] [Related]

  • 3. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T, Lin YL, Dudev M, Lim C.
    J Am Chem Soc; 2003 Mar 12; 125(10):3168-80. PubMed ID: 12617685
    [Abstract] [Full Text] [Related]

  • 4. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK, Reddi AR, Kennedy ML, Hyslop AG, Gibney BR.
    Inorg Chem; 2006 Dec 11; 45(25):9941-58. PubMed ID: 17140191
    [Abstract] [Full Text] [Related]

  • 5. Flexibility of metal binding sites in proteins on a database scale.
    Babor M, Greenblatt HM, Edelman M, Sobolev V.
    Proteins; 2005 May 01; 59(2):221-30. PubMed ID: 15726624
    [Abstract] [Full Text] [Related]

  • 6. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T, Jayaram B.
    Proteins; 2007 Jun 01; 67(4):1167-78. PubMed ID: 17380508
    [Abstract] [Full Text] [Related]

  • 7. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I, Sikić M, Tomić S.
    Acta Crystallogr D Biol Crystallogr; 2008 Mar 01; 64(Pt 3):257-63. PubMed ID: 18323620
    [Abstract] [Full Text] [Related]

  • 8. Crystal structure based design of functional metal/protein hybrids.
    Ueno T, Yokoi N, Abe S, Watanabe Y.
    J Inorg Biochem; 2007 Nov 01; 101(11-12):1667-75. PubMed ID: 17675160
    [Abstract] [Full Text] [Related]

  • 9. Binding response: a descriptor for selecting ligand binding site on protein surfaces.
    Zhong S, MacKerell AD.
    J Chem Inf Model; 2007 Nov 01; 47(6):2303-15. PubMed ID: 17900106
    [Abstract] [Full Text] [Related]

  • 10. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins.
    Chen D, Menche G, Power TD, Sower L, Peterson JW, Schein CH.
    Proteins; 2007 May 15; 67(3):593-605. PubMed ID: 17311351
    [Abstract] [Full Text] [Related]

  • 11. Postprocessing of docked protein-ligand complexes using implicit solvation models.
    Lindström A, Edvinsson L, Johansson A, Andersson CD, Andersson IE, Raubacher F, Linusson A.
    J Chem Inf Model; 2011 Feb 28; 51(2):267-82. PubMed ID: 21309544
    [Abstract] [Full Text] [Related]

  • 12. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.
    Velec HF, Gohlke H, Klebe G.
    J Med Chem; 2005 Oct 06; 48(20):6296-303. PubMed ID: 16190756
    [Abstract] [Full Text] [Related]

  • 13. Novel statistical-thermodynamic methods to predict protein-ligand binding positions using probability distribution functions.
    Ruvinsky AM, Kozintsev AV.
    Proteins; 2006 Jan 01; 62(1):202-8. PubMed ID: 16287127
    [Abstract] [Full Text] [Related]

  • 14. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J, Wang Q, Zhou J, Lai L.
    Proteins; 2004 Dec 01; 57(4):651-64. PubMed ID: 15390269
    [Abstract] [Full Text] [Related]

  • 15. Extension of QM/MM docking and its applications to metalloproteins.
    Cho AE, Rinaldo D.
    J Comput Chem; 2009 Dec 01; 30(16):2609-16. PubMed ID: 19373896
    [Abstract] [Full Text] [Related]

  • 16. MolDock: a new technique for high-accuracy molecular docking.
    Thomsen R, Christensen MH.
    J Med Chem; 2006 Jun 01; 49(11):3315-21. PubMed ID: 16722650
    [Abstract] [Full Text] [Related]

  • 17. Virtual screening against metalloenzymes for inhibitors and substrates.
    Irwin JJ, Raushel FM, Shoichet BK.
    Biochemistry; 2005 Sep 20; 44(37):12316-28. PubMed ID: 16156645
    [Abstract] [Full Text] [Related]

  • 18. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction.
    Hu X, Shelver WH.
    J Mol Graph Model; 2003 Nov 20; 22(2):115-26. PubMed ID: 12932782
    [Abstract] [Full Text] [Related]

  • 19. The architecture of metal coordination groups in proteins.
    Harding MM.
    Acta Crystallogr D Biol Crystallogr; 2004 May 20; 60(Pt 5):849-59. PubMed ID: 15103130
    [Abstract] [Full Text] [Related]

  • 20. Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA.
    Pennella MA, Arunkumar AI, Giedroc DP.
    J Mol Biol; 2006 Mar 10; 356(5):1124-36. PubMed ID: 16406068
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.