These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 18043671
1. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. Kunapuli U, Lueders T, Meckenstock RU. ISME J; 2007 Nov; 1(7):643-53. PubMed ID: 18043671 [Abstract] [Full Text] [Related]
2. Time-resolved DNA stable isotope probing links Desulfobacterales- and Coriobacteriaceae-related bacteria to anaerobic degradation of benzene under methanogenic conditions. Noguchi M, Kurisu F, Kasuga I, Furumai H. Microbes Environ; 2014 Nov; 29(2):191-9. PubMed ID: 24909708 [Abstract] [Full Text] [Related]
3. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. Cupples AM. J Microbiol Methods; 2011 May; 85(2):83-91. PubMed ID: 21356251 [Abstract] [Full Text] [Related]
4. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. Laban NA, Dao A, Foght J. FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25873466 [Abstract] [Full Text] [Related]
5. Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Marozava S, Mouttaki H, Müller H, Laban NA, Probst AJ, Meckenstock RU. Biodegradation; 2018 Feb; 29(1):23-39. PubMed ID: 29177812 [Abstract] [Full Text] [Related]
6. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Musat F, Widdel F. Environ Microbiol; 2008 Jan; 10(1):10-9. PubMed ID: 18211263 [Abstract] [Full Text] [Related]
7. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. van der Zaan BM, Saia FT, Stams AJ, Plugge CM, de Vos WM, Smidt H, Langenhoff AA, Gerritse J. Environ Microbiol; 2012 May; 14(5):1171-81. PubMed ID: 22296107 [Abstract] [Full Text] [Related]
8. Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C. Environ Microbiol; 2010 Feb; 12(2):401-11. PubMed ID: 19840104 [Abstract] [Full Text] [Related]
9. Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K. J Biosci Bioeng; 2009 Dec; 108(6):501-7. PubMed ID: 19914583 [Abstract] [Full Text] [Related]
10. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU. Environ Microbiol; 2010 Oct; 12(10):2783-96. PubMed ID: 20545743 [Abstract] [Full Text] [Related]
11. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Kunapuli U, Griebler C, Beller HR, Meckenstock RU. Environ Microbiol; 2008 Jul; 10(7):1703-12. PubMed ID: 18412549 [Abstract] [Full Text] [Related]
12. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics. Keller AH, Kleinsteuber S, Vogt C. Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312 [Abstract] [Full Text] [Related]
13. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. Botton S, van Harmelen M, Braster M, Parsons JR, Röling WF. FEMS Microbiol Ecol; 2007 Oct; 62(1):118-30. PubMed ID: 17784862 [Abstract] [Full Text] [Related]
14. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. Zhuang L, Tang J, Wang Y, Hu M, Zhou S. J Hazard Mater; 2015 Aug 15; 293():37-45. PubMed ID: 25827267 [Abstract] [Full Text] [Related]
15. Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. Selesi D, Meckenstock RU. FEMS Microbiol Ecol; 2009 Apr 15; 68(1):86-93. PubMed ID: 19187215 [Abstract] [Full Text] [Related]
16. Functional analysis of an anaerobic m-xylene-degrading enrichment culture using protein-based stable isotope probing. Bozinovski D, Herrmann S, Richnow HH, von Bergen M, Seifert J, Vogt C. FEMS Microbiol Ecol; 2012 Jul 15; 81(1):134-44. PubMed ID: 22360283 [Abstract] [Full Text] [Related]
17. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors. Cervantes FJ, Mancilla AR, Ríos-del Toro EE, Alpuche-Solís AG, Montoya-Lorenzana L. J Hazard Mater; 2011 Nov 15; 195():201-7. PubMed ID: 21880424 [Abstract] [Full Text] [Related]
18. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. Abu Laban N, Selesi D, Jobelius C, Meckenstock RU. FEMS Microbiol Ecol; 2009 Jun 15; 68(3):300-11. PubMed ID: 19416354 [Abstract] [Full Text] [Related]
19. Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate. Dong X, Dröge J, von Toerne C, Marozava S, McHardy AC, Meckenstock RU. FEMS Microbiol Ecol; 2017 Mar 01; 93(3):. PubMed ID: 28011598 [Abstract] [Full Text] [Related]