These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


370 related items for PubMed ID: 18045017

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A, Nagurka M, Flash T.
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [Abstract] [Full Text] [Related]

  • 4. The minimum endpoint variance trajectory depends on the profile of the signal-dependent noise.
    Iguchi N, Sakaguchi Y, Ishida F.
    Biol Cybern; 2005 Apr; 92(4):219-28. PubMed ID: 15765212
    [Abstract] [Full Text] [Related]

  • 5. COMAP: a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements.
    Emadi Andani M, Bahrami F.
    Hum Mov Sci; 2012 Oct; 31(5):1037-55. PubMed ID: 22925477
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J, Taniai Y.
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [Abstract] [Full Text] [Related]

  • 7. Minimum acceleration with constraints of center of mass: a unified model for arm movements and object manipulation.
    Leib R, Karniel A.
    J Neurophysiol; 2012 Sep; 108(6):1646-55. PubMed ID: 22696546
    [Abstract] [Full Text] [Related]

  • 8. A simple control policy for achieving minimum jerk trajectories.
    Yazdani M, Gamble G, Henderson G, Hecht-Nielsen R.
    Neural Netw; 2012 Mar; 27():74-80. PubMed ID: 22137550
    [Abstract] [Full Text] [Related]

  • 9. Optimal trajectory formation of constrained human arm reaching movements.
    Ohta K, Svinin MM, Luo Z, Hosoe S, Laboissière R.
    Biol Cybern; 2004 Jul; 91(1):23-36. PubMed ID: 15309545
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Model-based neural decoding of reaching movements: a maximum likelihood approach.
    Kemere C, Shenoy KV, Meng TH.
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y, Kaneko Y, Nakano E, Osu R, Kawato M.
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [Abstract] [Full Text] [Related]

  • 17. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M.
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM, Bhat A, Scholz JP, Galloway JC.
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [Abstract] [Full Text] [Related]

  • 20. Slowing of human arm movements during weightlessness: the role of vision.
    Mechtcheriakov S, Berger M, Molokanova E, Holzmueller G, Wirtenberger W, Lechner-Steinleitner S, De Col C, Kozlovskaya I, Gerstenbrand F.
    Eur J Appl Physiol; 2002 Oct; 87(6):576-83. PubMed ID: 12355199
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.