These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


314 related items for PubMed ID: 18047154

  • 1. Bio-inspired cell concentration and deformability monitoring chips.
    Cho YH, Youn S, Lee DW.
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4214-9. PubMed ID: 18047154
    [Abstract] [Full Text] [Related]

  • 2. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH, Lee GB.
    Biosens Bioelectron; 2005 Sep 15; 21(3):419-25. PubMed ID: 16076430
    [Abstract] [Full Text] [Related]

  • 3. Sample flow switching techniques on microfluidic chips.
    Pan YJ, Lin JJ, Luo WJ, Yang RJ.
    Biosens Bioelectron; 2006 Feb 15; 21(8):1644-8. PubMed ID: 16112854
    [Abstract] [Full Text] [Related]

  • 4. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW, Yoo JY.
    Biosens Bioelectron; 2009 Aug 15; 24(12):3677-82. PubMed ID: 19559591
    [Abstract] [Full Text] [Related]

  • 5. Dielectrophoretic platforms for bio-microfluidic systems.
    Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K.
    Biosens Bioelectron; 2011 Jan 15; 26(5):1800-14. PubMed ID: 20933384
    [Abstract] [Full Text] [Related]

  • 6. Review: Aptamers in microfluidic chips.
    Xu Y, Yang X, Wang E.
    Anal Chim Acta; 2010 Dec 17; 683(1):12-20. PubMed ID: 21094377
    [Abstract] [Full Text] [Related]

  • 7. General concept of high-performance amperometric detector for microfluidic (bio)analytical chips.
    Amatore C, Da Mota N, Sella C, Thouin L.
    Anal Chem; 2008 Jul 01; 80(13):4976-85. PubMed ID: 18470995
    [Abstract] [Full Text] [Related]

  • 8. Correlation between erythrocytes deformability and size: a study using a microchannel based cell analyzer.
    Bransky A, Korin N, Nemirovski Y, Dinnar U.
    Microvasc Res; 2007 Jan 01; 73(1):7-13. PubMed ID: 17123552
    [Abstract] [Full Text] [Related]

  • 9. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA.
    Schüler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Möller R, Popp J.
    Biosens Bioelectron; 2009 Sep 15; 25(1):15-21. PubMed ID: 19592230
    [Abstract] [Full Text] [Related]

  • 10. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C, Sporer C, Rodriguez-Villareal I, Rodriguez-Trujillo R, Homs-Corbera A, Samitier J.
    Lab Chip; 2012 Oct 21; 12(20):4143-50. PubMed ID: 22868270
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Learning from nature: building bio-inspired smart nanochannels.
    Hou X, Jiang L.
    ACS Nano; 2009 Nov 24; 3(11):3339-42. PubMed ID: 19928930
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels.
    Tatsumi K, Katsumoto Y, Fujiwara R, Nakabe K.
    Sensors (Basel); 2012 Nov 24; 12(8):10566-83. PubMed ID: 23112616
    [Abstract] [Full Text] [Related]

  • 20. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    García-Alonso J, Greenway GM, Hardege JD, Haswell SJ.
    Biosens Bioelectron; 2009 Jan 01; 24(5):1508-11. PubMed ID: 18805688
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.