These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 18054737

  • 41. Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity.
    Erion MD, Dang Q, Reddy MR, Kasibhatla SR, Huang J, Lipscomb WN, van Poelje PD.
    J Am Chem Soc; 2007 Dec 19; 129(50):15480-90. PubMed ID: 18041833
    [Abstract] [Full Text] [Related]

  • 42. Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site.
    Kristiansen M, Andersen B, Iversen LF, Westergaard N.
    J Med Chem; 2004 Jul 01; 47(14):3537-45. PubMed ID: 15214781
    [Abstract] [Full Text] [Related]

  • 43. Glucose homeostasis in the newborn.
    Hume R, Burchell A, Williams FL, Koh DK.
    Early Hum Dev; 2005 Jan 01; 81(1):95-101. PubMed ID: 15707720
    [Abstract] [Full Text] [Related]

  • 44. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes.
    Edgerton DS, Johnson KM, Cherrington AD.
    Front Biosci (Landmark Ed); 2009 Jan 01; 14(3):1169-81. PubMed ID: 19273123
    [Abstract] [Full Text] [Related]

  • 45. Molecular mechanisms of increased glucose production: identifying potential therapeutic targets.
    Proietto J, Andrikopoulos S.
    J Investig Med; 2004 Sep 01; 52(6):389-93. PubMed ID: 15612452
    [Abstract] [Full Text] [Related]

  • 46. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus.
    Kaur R, Dahiya L, Kumar M.
    Eur J Med Chem; 2017 Dec 01; 141():473-505. PubMed ID: 29055870
    [Abstract] [Full Text] [Related]

  • 47. The role of new basal insulin analogues in the initiation and optimisation of insulin therapy in type 2 diabetes.
    Baxter MA.
    Acta Diabetol; 2008 Dec 01; 45(4):253-68. PubMed ID: 18766296
    [Abstract] [Full Text] [Related]

  • 48. DPP-4 inhibitors and GLP-1 analogues: for whom? Which place for incretins in the management of type 2 diabetic patients?
    Halimi S.
    Diabetes Metab; 2008 Feb 01; 34 Suppl 2():S91-5. PubMed ID: 18640591
    [Abstract] [Full Text] [Related]

  • 49. Glucagon receptor antagonists for the treatment of type II diabetes: current prospects.
    Djuric SW, Grihalde N, Lin CW.
    Curr Opin Investig Drugs; 2002 Nov 01; 3(11):1617-23. PubMed ID: 12476962
    [Abstract] [Full Text] [Related]

  • 50. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia.
    Gu W, Yan H, Winters KA, Komorowski R, Vonderfecht S, Atangan L, Sivits G, Hill D, Yang J, Bi V, Shen Y, Hu S, Boone T, Lindberg RA, Véniant MM.
    J Pharmacol Exp Ther; 2009 Dec 01; 331(3):871-81. PubMed ID: 19720878
    [Abstract] [Full Text] [Related]

  • 51. The glucose-6-phosphatase system in human development.
    Burchell A, Hume R.
    Histol Histopathol; 1995 Oct 01; 10(4):979-93. PubMed ID: 8574017
    [Abstract] [Full Text] [Related]

  • 52. Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes.
    Klabunde T, Wendt KU, Kadereit D, Brachvogel V, Burger HJ, Herling AW, Oikonomakos NG, Kosmopoulou MN, Schmoll D, Sarubbi E, von Roedern E, Schönafinger K, Defossa E.
    J Med Chem; 2005 Oct 06; 48(20):6178-93. PubMed ID: 16190745
    [Abstract] [Full Text] [Related]

  • 53. Fate of the beta-cell in the pathophysiology of type 2 diabetes.
    Campbell RK.
    J Am Pharm Assoc (2003); 2009 Oct 06; 49 Suppl 1():S10-5. PubMed ID: 19801360
    [Abstract] [Full Text] [Related]

  • 54. Supplementation of a novel microbial biopolymer, PGB1, from new Enterobacter sp. BL-2 delays the deterioration of type 2 diabetic mice.
    Yeo J, Lee YH, Jeon SM, Jung UJ, Lee MK, Jung YM, Choi MS.
    J Microbiol Biotechnol; 2007 Dec 06; 17(12):1983-90. PubMed ID: 18167446
    [Abstract] [Full Text] [Related]

  • 55. Exploring the pharmacotherapeutic options for treating type 2 diabetes.
    Kruger DF.
    Diabetes Educ; 2008 Dec 06; 34 Suppl 3():60S-65S. PubMed ID: 18525066
    [Abstract] [Full Text] [Related]

  • 56. Rhaponticin from rhubarb rhizomes alleviates liver steatosis and improves blood glucose and lipid profiles in KK/Ay diabetic mice.
    Chen J, Ma M, Lu Y, Wang L, Wu C, Duan H.
    Planta Med; 2009 Apr 06; 75(5):472-7. PubMed ID: 19235684
    [Abstract] [Full Text] [Related]

  • 57. Acetaminophen normalizes glucose homeostasis in mouse models for diabetes.
    Shertzer HG, Schneider SN, Kendig EL, Clegg DJ, D'Alessio DA, Genter MB.
    Biochem Pharmacol; 2008 Mar 15; 75(6):1402-10. PubMed ID: 18237716
    [Abstract] [Full Text] [Related]

  • 58. Inhibition of glycogen phosphorylase in the context of type 2 diabetes, with focus on recent inhibitors bound at the active site.
    Praly JP, Vidal S.
    Mini Rev Med Chem; 2010 Oct 15; 10(12):1102-26. PubMed ID: 20716051
    [Abstract] [Full Text] [Related]

  • 59. New pharmacological approaches to therapy of NIDDM.
    Bressler R, Johnson D.
    Diabetes Care; 1992 Jun 15; 15(6):792-805. PubMed ID: 1600838
    [Abstract] [Full Text] [Related]

  • 60. [Glycemic regulation. Application to the diagnosis of hypoglycemia in children (excluding neonatal hypoglycemia)].
    Saudubray JM, Marsac C.
    Ann Pediatr (Paris); 1978 Jun 15; 25(3-4):153-60. PubMed ID: 16114320
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.