These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


61 related items for PubMed ID: 1805540

  • 1. Voltage-dependent phosphate transport in osteoblast-like cells.
    Luong KV, Green J, Kleeman CR, Yamaguchi DT.
    J Bone Miner Res; 1991 Nov; 6(11):1161-5. PubMed ID: 1805540
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Structure-function relations of the first and fourth predicted extracellular linkers of the type IIa Na+/Pi cotransporter: I. Cysteine scanning mutagenesis.
    Ehnes C, Forster IC, Kohler K, Bacconi A, Stange G, Biber J, Murer H.
    J Gen Physiol; 2004 Nov; 124(5):475-88. PubMed ID: 15504898
    [Abstract] [Full Text] [Related]

  • 10. Renal Na(+)-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+ gradient, membrane potential, and pH.
    Harvey N, Tenenhouse HS.
    J Bone Miner Res; 1992 May; 7(5):563-71. PubMed ID: 1319668
    [Abstract] [Full Text] [Related]

  • 11. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites.
    Ehnes C, Forster IC, Bacconi A, Kohler K, Biber J, Murer H.
    J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899
    [Abstract] [Full Text] [Related]

  • 12. Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane.
    Burgener D, Bonjour JP, Caverzasio J.
    J Bone Miner Res; 1995 Jan; 10(1):164-71. PubMed ID: 7747624
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The biochemical characterization of two phosphate transport systems in Phytomonas serpens.
    Vieira-Bernardo R, Gomes-Vieira AL, Carvalho-Kelly LF, Russo-Abrahão T, Meyer-Fernandes JR.
    Exp Parasitol; 2017 Feb; 173():1-8. PubMed ID: 27956087
    [Abstract] [Full Text] [Related]

  • 17. Inorganic phosphate uptake in Trypanosoma cruzi is coupled to K(+) cycling and to active Na(+) extrusion.
    Dick CF, Dos-Santos AL, Majerowicz D, Paes LS, Giarola NL, Gondim KC, Vieyra A, Meyer-Fernandes JR.
    Biochim Biophys Acta; 2013 Aug; 1830(8):4265-73. PubMed ID: 23643965
    [Abstract] [Full Text] [Related]

  • 18. Fluoride selectively stimulates Na-dependent phosphate transport in osteoblast-like cells.
    Selz T, Caverzasio J, Bonjour JP.
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E833-8. PubMed ID: 1647669
    [Abstract] [Full Text] [Related]

  • 19. Characterization of a Pi transport system in cartilage matrix vesicles. Potential role in the calcification process.
    Montessuit C, Caverzasio J, Bonjour JP.
    J Biol Chem; 1991 Sep 25; 266(27):17791-7. PubMed ID: 1833387
    [Abstract] [Full Text] [Related]

  • 20. Phosphate transport in osteoclasts: a functional and immunochemical characterization.
    Gupta A, Miyauchi A, Fujimori A, Hruska KA.
    Kidney Int; 1996 Apr 25; 49(4):968-74. PubMed ID: 8691746
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.