These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
61 related items for PubMed ID: 1805540
21. Regulation of phosphate (Pi) transport and NaPi-III transporter (Pit-1) mRNA in rat osteoblasts. Zoidis E, Ghirlanda-Keller C, Gosteli-Peter M, Zapf J, Schmid C. J Endocrinol; 2004 Jun; 181(3):531-40. PubMed ID: 15171701 [Abstract] [Full Text] [Related]
22. Na⁺-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L.) Delile. Rubio L, García-Pérez D, García-Sánchez MJ, Fernández JA. Int J Mol Sci; 2018 May 24; 19(6):. PubMed ID: 29795043 [Abstract] [Full Text] [Related]
23. [Sodium-dependent inorganic phosphate transporters and biomineralization]. Tatsumi S, Fujii O, Miyagawa A, Miyamoto K. Clin Calcium; 2014 Feb 24; 24(2):249-55. PubMed ID: 24473358 [Abstract] [Full Text] [Related]
24. Skeletal muscle Pi transport and cellular [Pi] studied in L6 myoblasts and rabbit muscle-membrane vesicles. Kemp GJ, Polgreen KE, Radda GK. Biochim Biophys Acta; 1992 Oct 06; 1137(1):10-8. PubMed ID: 1390898 [Abstract] [Full Text] [Related]
25. Na+-independent phosphate transport in Caco2BBE cells. Candeal E, Caldas YA, Guillén N, Levi M, Sorribas V. Am J Physiol Cell Physiol; 2014 Dec 15; 307(12):C1113-22. PubMed ID: 25298422 [Abstract] [Full Text] [Related]
26. Differential effects of fluoride and insulin-like growth factor I on sodium-dependent alanine and phosphate transport in a human osteoblast-like cell line. Veldman CM, Schmid C. Growth Horm IGF Res; 1998 Feb 15; 8(1):55-63. PubMed ID: 10990445 [Abstract] [Full Text] [Related]
27. Characteristics of phosphate transport in osteoblastlike cells. Caverzasio J, Selz T, Bonjour JP. Calcif Tissue Int; 1988 Aug 15; 43(2):83-7. PubMed ID: 3142671 [Abstract] [Full Text] [Related]
28. Membrane potential of primitive red cells from chick embryo is a proton potential. Engelke M, Zingel W, Baumann R. J Cell Physiol; 1988 Apr 15; 135(1):87-93. PubMed ID: 2835379 [Abstract] [Full Text] [Related]
29. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process. Passarella S, Atlante A, Quagliariello E. Eur J Biochem; 1990 Oct 05; 193(1):221-7. PubMed ID: 2226441 [Abstract] [Full Text] [Related]
30. Interaction of cations with phosphate uptake by Saccharomyces cerevisiae. Effects of surface potential. Roomans GM, Borst-Pauwels GW. Biochem J; 1979 Mar 15; 178(3):521-7. PubMed ID: 36883 [Abstract] [Full Text] [Related]
31. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation. Kuroki M, Kamo N, Kobatake Y, Okimasu E, Utsumi K. Biochim Biophys Acta; 1982 Dec 22; 693(2):326-34. PubMed ID: 7159582 [Abstract] [Full Text] [Related]
32. Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231. Russo-Abrahão T, Lacerda-Abreu MA, Gomes T, Cosentino-Gomes D, Carvalho-de-Araújo AD, Rodrigues MF, Oliveira ACL, Rumjanek FD, Monteiro RQ, Meyer-Fernandes JR. PLoS One; 2018 Dec 22; 13(2):e0191270. PubMed ID: 29415049 [Abstract] [Full Text] [Related]
33. Sodium-dependent transport of Pi by an established intestinal epithelial cell line (CaCo-2). Mohrmann I, Mohrmann M, Biber J, Murer H. Am J Physiol; 1986 Mar 22; 250(3 Pt 1):G323-30. PubMed ID: 2420207 [Abstract] [Full Text] [Related]
34. H+-dependent inorganic phosphate transporter in breast cancer cells: Possible functions in the tumor microenvironment. Lacerda-Abreu MA, Russo-Abrahão T, Cosentino-Gomes D, Nascimento MTC, Carvalho-Kelly LF, Gomes T, Rodrigues MF, König S, Rumjanek FD, Monteiro RQ, Meyer-Fernandes JR. Biochim Biophys Acta Mol Basis Dis; 2019 Sep 01; 1865(9):2180-2188. PubMed ID: 31034992 [Abstract] [Full Text] [Related]
35. Phosphate transport system in paracoccus denitrificans. Zboril P, Horák Z, Dadák V. J Bioenerg Biomembr; 1983 Feb 01; 15(1):1-12. PubMed ID: 6853472 [Abstract] [Full Text] [Related]
36. 1,25-Dihydroxyvitamin D3 increases the Pi concentration in cultured osteoblasts. Ahmado A, Bevington A, Russell RG. Biochem Soc Trans; 1990 Aug 01; 18(4):624-5. PubMed ID: 2276476 [No Abstract] [Full Text] [Related]
37. Phosphoinositides provide a regulatory mechanism of surface charge and active transport. Cerbón J, Ontiveros C, Janovitz A. Biochim Biophys Acta; 1986 Aug 01; 887(3):275-82. PubMed ID: 3015237 [Abstract] [Full Text] [Related]
38. Inorganic phosphate uptake by protoplasts and whole cells of yeast Candida tropicalis: absence of high affinity transport system in protoplasts. Jeanjean R, Bedu S, Attia A, Rocca-Serra J. Biochimie; 1982 Jan 01; 64(1):75-8. PubMed ID: 7066409 [Abstract] [Full Text] [Related]
39. The use of fluorescent probe to monitor alterations in trans-membrane potential in single cell suspensions. Bramhall JS, Morgan JI, Perris AD, Britten AZ. Biochem Biophys Res Commun; 1976 Sep 20; 72(2):654-62. PubMed ID: 825119 [No Abstract] [Full Text] [Related]
40. Identification of a plasma membrane protein involved in Pi transport in the yeast Candida tropicalis. Jeanjean R, Blasco F, Hirn M. FEBS Lett; 1984 Jan 02; 165(1):83-7. PubMed ID: 6198209 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]