These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 18059496

  • 21. Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean.
    Sala MM, Terrado R, Lovejoy C, Unrein F, Pedrós-Alió C.
    Environ Microbiol; 2008 Apr; 10(4):942-9. PubMed ID: 18218033
    [Abstract] [Full Text] [Related]

  • 22. Self-organization of dissolved organic matter to micelle-like microparticles in river water.
    Kerner M, Hohenberg H, Ertl S, Reckermann M, Spitzy A.
    Nature; 2003 Mar 13; 422(6928):150-4. PubMed ID: 12634782
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.
    Sousa AI, Lillebø AI, Pardal MA, Caçador I.
    Mar Pollut Bull; 2010 Mar 13; 61(4-6):215-23. PubMed ID: 20304438
    [Abstract] [Full Text] [Related]

  • 25. [Bacterial quantity and microbial reactivity in Tugur bay of the Okhotsk Sea].
    Dziuban AN.
    Mikrobiologiia; 2003 Mar 13; 72(3):419-26. PubMed ID: 12901020
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Allochthonous Carbon--a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea.
    Figueroa D, Rowe OF, Paczkowska J, Legrand C, Andersson A.
    Microb Ecol; 2016 May 13; 71(4):789-801. PubMed ID: 26677860
    [Abstract] [Full Text] [Related]

  • 28. Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake.
    Kisand V, Nõges T.
    FEMS Microbiol Ecol; 2004 Oct 01; 50(1):51-62. PubMed ID: 19712376
    [Abstract] [Full Text] [Related]

  • 29. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem.
    Thingstad TF, Bellerby RG, Bratbak G, Børsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa RA, Skjoldal EF, Tanaka T, Thyrhaug R, Töpper B.
    Nature; 2008 Sep 18; 455(7211):387-90. PubMed ID: 18716617
    [Abstract] [Full Text] [Related]

  • 30. Estimation of long-term bacterial respiration and growth efficiency in Lake Kinneret.
    Berman T, Yacobi YZ, Parparov A, Gal G.
    FEMS Microbiol Ecol; 2010 Mar 18; 71(3):351-63. PubMed ID: 20041950
    [Abstract] [Full Text] [Related]

  • 31. Functional and compositional succession of bacterioplankton in response to a gradient in bioavailable dissolved organic carbon.
    Dinasquet J, Kragh T, Schrøter ML, Søndergaard M, Riemann L.
    Environ Microbiol; 2013 Sep 18; 15(9):2616-28. PubMed ID: 23827019
    [Abstract] [Full Text] [Related]

  • 32. Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China.
    Qiu L, Cui H, Wu J, Wang B, Zhao Y, Li J, Jia L, Wei Z.
    Sci Total Environ; 2016 Jun 15; 556():242-51. PubMed ID: 26974572
    [Abstract] [Full Text] [Related]

  • 33. Disinfection byproduct formation potentials of wetlands, agricultural drains, and rivers and the effect of biodegradation on trihalomethane precursors.
    Engelage SK, Stringfellow WT, Letain T.
    J Environ Qual; 2009 Jun 15; 38(5):1901-8. PubMed ID: 19643756
    [Abstract] [Full Text] [Related]

  • 34. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake.
    Huss AA, Wehr JD.
    Microb Ecol; 2004 May 15; 47(4):305-15. PubMed ID: 15037963
    [Abstract] [Full Text] [Related]

  • 35. Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment.
    Nelson CE, Carlson CA.
    PLoS One; 2011 Mar 31; 6(3):e18320. PubMed ID: 21483836
    [Abstract] [Full Text] [Related]

  • 36. Phosphorus use by planktonic communities in a large regulated Mediterranean river.
    Artigas J, Soley S, Pérez-Baliero MC, Romaní AM, Ruiz-González C, Sabater S.
    Sci Total Environ; 2012 Jun 01; 426():180-7. PubMed ID: 22503678
    [Abstract] [Full Text] [Related]

  • 37. Elevated pCO2 enhances bacterioplankton removal of organic carbon.
    James AK, Passow U, Brzezinski MA, Parsons RJ, Trapani JN, Carlson CA.
    PLoS One; 2017 Jun 01; 12(3):e0173145. PubMed ID: 28257422
    [Abstract] [Full Text] [Related]

  • 38. Dissolved organic carbon as major environmental factor affecting bacterioplankton communities in mountain lakes of eastern Japan.
    Fujii M, Kojima H, Iwata T, Urabe J, Fukui M.
    Microb Ecol; 2012 Apr 01; 63(3):496-508. PubMed ID: 22109097
    [Abstract] [Full Text] [Related]

  • 39. Dissolved primary production and the strength of phytoplankton- bacterioplankton coupling in contrasting marine regions.
    Morán XA, Estrada M, Gasol JM, Pedrós-Alió C.
    Microb Ecol; 2002 Oct 01; 44(3):217-23. PubMed ID: 12209254
    [Abstract] [Full Text] [Related]

  • 40. Polymerized coumaric acid as a model substrate for terrestrial-derived dissolved organic carbon utilized by aquatic microorganisms.
    Tittel J, Poerschmann J, Wannicke N, Kamjunke N.
    J Microbiol Methods; 2008 Jun 01; 73(3):237-41. PubMed ID: 18400319
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.