These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 18064543

  • 1. A chemosensing ensemble for the detection of cysteine based on the inner filter effect using a rhodamine B spirolactam.
    Yang XF, Liu P, Wang L, Zhao M.
    J Fluoresc; 2008 Mar; 18(2):453-9. PubMed ID: 18064543
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity.
    Xiang Y, Tong A, Jin P, Ju Y.
    Org Lett; 2006 Jun 22; 8(13):2863-6. PubMed ID: 16774276
    [Abstract] [Full Text] [Related]

  • 4. A novel chemosensor based on rhodamine derivative for colorimetric and fluorometric detection of Cu2+ in aqueous solution.
    Wang Y, Wu HQ, Sun JH, Liu XY, Luo J, Chen MQ.
    J Fluoresc; 2012 May 22; 22(3):799-805. PubMed ID: 22441753
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A rhodamine-based fluorescent probe for Cu(II) determination in aqueous solution.
    Mao J, Cheng J, Wang X, Wang S, Cheng N, Wang J.
    Luminescence; 2015 Mar 22; 30(2):221-7. PubMed ID: 25045042
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A selective and sensitive fluorescent sensor for cysteine detection based on bi-8-carboxamidoquinoline derivative and Cu2+ complex.
    Chai G, Liu Q, Fei Q, Zhang J, Sun X, Shan H, Feng G, Huan Y.
    Luminescence; 2018 Feb 22; 33(1):153-160. PubMed ID: 28929568
    [Abstract] [Full Text] [Related]

  • 11. An rhodamine-based fluorescence probe for iron(III) ion determination in aqueous solution.
    Mao J, He Q, Liu W.
    Talanta; 2010 Mar 15; 80(5):2093-8. PubMed ID: 20152457
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A rhodamine-based "turn-on" fluorescent probe for Fe3+ in aqueous solution.
    Ji S, Meng X, Ye W, Feng Y, Sheng H, Cai Y, Liu J, Zhu X, Guo Q.
    Dalton Trans; 2014 Jan 28; 43(4):1583-8. PubMed ID: 24217856
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Two new rhodamine-based fluorescent chemosensors for Fe3+ in aqueous solution.
    Liu Y, Xu Z, Wang J, Zhang D, Ye Y, Zhao Y.
    Luminescence; 2014 Nov 28; 29(7):945-51. PubMed ID: 24700778
    [Abstract] [Full Text] [Related]

  • 17. Rhodamine-based derivatives for Cu2+ sensing: spectroscopic studies, structure-recognition relationships and its test strips.
    Yang Y, Gao W, Sheng R, Wang W, Liu H, Yang W, Zhang T, Zhang X.
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct 15; 81(1):14-20. PubMed ID: 21723778
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.