These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 18065459

  • 1. Domain nucleation rates and interfacial line tensions in supported bilayers of ternary mixtures containing galactosylceramide.
    Blanchette CD, Lin WC, Orme CA, Ratto TV, Longo ML.
    Biophys J; 2008 Apr 01; 94(7):2691-7. PubMed ID: 18065459
    [Abstract] [Full Text] [Related]

  • 2. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol.
    Lin WC, Blanchette CD, Longo ML.
    Biophys J; 2007 Apr 15; 92(8):2831-41. PubMed ID: 17237202
    [Abstract] [Full Text] [Related]

  • 3. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD, Lin WC, Ratto TV, Longo ML.
    Biophys J; 2006 Jun 15; 90(12):4466-78. PubMed ID: 16565044
    [Abstract] [Full Text] [Related]

  • 4. Using nucleation rates to determine the interfacial line tension of symmetric and asymmetric lipid bilayer domains.
    Blanchette CD, Lin WC, Orme CA, Ratto TV, Longo ML.
    Langmuir; 2007 May 22; 23(11):5875-7. PubMed ID: 17451264
    [Abstract] [Full Text] [Related]

  • 5. Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures.
    Szmodis AW, Blanchette CD, Longo ML, Orme CA, Parikh AN.
    Biointerphases; 2010 Dec 22; 5(4):120-30. PubMed ID: 21219033
    [Abstract] [Full Text] [Related]

  • 6. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids.
    Rawicz W, Smith BA, McIntosh TJ, Simon SA, Evans E.
    Biophys J; 2008 Jun 22; 94(12):4725-36. PubMed ID: 18339739
    [Abstract] [Full Text] [Related]

  • 7. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA, Gratton E.
    Biophys J; 2000 Jul 22; 79(1):434-47. PubMed ID: 10866969
    [Abstract] [Full Text] [Related]

  • 8. Membrane domain modulation of Aβ1-42 oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation.
    Azouz M, Cullin C, Lecomte S, Lafleur M.
    Nanoscale; 2019 Nov 21; 11(43):20857-20867. PubMed ID: 31657431
    [Abstract] [Full Text] [Related]

  • 9. Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air.
    Coban O, Popov J, Burger M, Vobornik D, Johnston LJ.
    Biophys J; 2007 Apr 15; 92(8):2842-53. PubMed ID: 17237193
    [Abstract] [Full Text] [Related]

  • 10. Effect of line tension on the lateral organization of lipid membranes.
    García-Sáez AJ, Chiantia S, Schwille P.
    J Biol Chem; 2007 Nov 16; 282(46):33537-33544. PubMed ID: 17848582
    [Abstract] [Full Text] [Related]

  • 11. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
    Marquês JT, Viana AS, De Almeida RF.
    Biochim Biophys Acta; 2011 Jan 16; 1808(1):405-14. PubMed ID: 20955684
    [Abstract] [Full Text] [Related]

  • 12. Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt.
    Kuzmin PI, Akimov SA, Chizmadzhev YA, Zimmerberg J, Cohen FS.
    Biophys J; 2005 Feb 16; 88(2):1120-33. PubMed ID: 15542550
    [Abstract] [Full Text] [Related]

  • 13. Assessing the nature of lipid raft membranes.
    Niemelä PS, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I.
    PLoS Comput Biol; 2007 Feb 23; 3(2):e34. PubMed ID: 17319738
    [Abstract] [Full Text] [Related]

  • 14. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J, Davis JH, Sharom FJ.
    Biochem J; 2010 Sep 15; 430(3):415-23. PubMed ID: 20642452
    [Abstract] [Full Text] [Related]

  • 15. "Entropic traps" in the kinetics of phase separation in multicomponent membranes stabilize nanodomains.
    Frolov VA, Chizmadzhev YA, Cohen FS, Zimmerberg J.
    Biophys J; 2006 Jul 01; 91(1):189-205. PubMed ID: 16617071
    [Abstract] [Full Text] [Related]

  • 16. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O, Pathak P, London E.
    Biophys J; 2007 Dec 15; 93(12):4307-18. PubMed ID: 17766350
    [Abstract] [Full Text] [Related]

  • 17. Effect of membrane characteristics on phase separation and domain formation in cholesterol-lipid mixtures.
    Pata V, Dan N.
    Biophys J; 2005 Feb 15; 88(2):916-24. PubMed ID: 15542557
    [Abstract] [Full Text] [Related]

  • 18. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes.
    Tsai WC, Feigenson GW.
    Biochim Biophys Acta Biomembr; 2019 Feb 01; 1861(2):478-485. PubMed ID: 30529459
    [Abstract] [Full Text] [Related]

  • 19. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM, Feigenson GW.
    Biochim Biophys Acta; 2016 Jan 01; 1858(1):153-61. PubMed ID: 26525664
    [Abstract] [Full Text] [Related]

  • 20. Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles.
    Chen D, Santore MM.
    Proc Natl Acad Sci U S A; 2014 Jan 07; 111(1):179-84. PubMed ID: 24344297
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.