These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
366 related items for PubMed ID: 18067539
1. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition. Pennetier C, Domínguez-Ramírez L, Plumbridge J. Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539 [Abstract] [Full Text] [Related]
2. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J. J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [Abstract] [Full Text] [Related]
3. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition in Escherichia coli. Bréchemier-Baey D, Domínguez-Ramírez L, Plumbridge J. Mol Microbiol; 2012 Sep; 85(5):1007-19. PubMed ID: 22788997 [Abstract] [Full Text] [Related]
4. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Plumbridge J, Pellegrini O. Mol Microbiol; 2004 Apr; 52(2):437-49. PubMed ID: 15066032 [Abstract] [Full Text] [Related]
5. Dual inducer signal recognition by an Mlc homologue. Bréchemier-Baey D, Pennetier C, Plumbridge J. Microbiology (Reading); 2015 Aug; 161(8):1694-1706. PubMed ID: 26293172 [Abstract] [Full Text] [Related]
7. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Plumbridge J. Nucleic Acids Res; 2001 Jan 15; 29(2):506-14. PubMed ID: 11139621 [Abstract] [Full Text] [Related]
8. Operator recognition by the ROK transcription factor family members, NagC and Mlc. Bréchemier-Baey D, Domínguez-Ramírez L, Oberto J, Plumbridge J. Nucleic Acids Res; 2015 Jan 15; 43(1):361-72. PubMed ID: 25452338 [Abstract] [Full Text] [Related]
9. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix. Plumbridge J, Kolb A. J Mol Biol; 1995 Jun 23; 249(5):890-902. PubMed ID: 7791215 [Abstract] [Full Text] [Related]
10. Repression of galP, the galactose transporter in Escherichia coli, requires the specific regulator of N-acetylglucosamine metabolism. El Qaidi S, Allemand F, Oberto J, Plumbridge J. Mol Microbiol; 2009 Jan 23; 71(1):146-57. PubMed ID: 19007420 [Abstract] [Full Text] [Related]
11. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins. Holtham CA, Jumel K, Miller CM, Harding SE, Baumberg S, Stockley PG. J Mol Biol; 1999 Jun 18; 289(4):707-27. PubMed ID: 10369757 [Abstract] [Full Text] [Related]
12. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL. FEMS Microbiol Rev; 2006 Mar 18; 30(2):157-86. PubMed ID: 16472303 [Abstract] [Full Text] [Related]
13. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Kwon HJ, Bennik MH, Demple B, Ellenberger T. Nat Struct Biol; 2000 May 18; 7(5):424-30. PubMed ID: 10802742 [Abstract] [Full Text] [Related]
14. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Xu Y, Beckett D. Biochemistry; 1996 Feb 13; 35(6):1783-92. PubMed ID: 8639659 [Abstract] [Full Text] [Related]
15. Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Lochowska A, Iwanicka-Nowicka R, Zaim J, Witkowska-Zimny M, Bolewska K, Hryniewicz MM. Mol Microbiol; 2004 Aug 13; 53(3):791-806. PubMed ID: 15255893 [Abstract] [Full Text] [Related]
16. YeeI, a novel protein involved in modulation of the activity of the glucose-phosphotransferase system in Escherichia coli K-12. Becker AK, Zeppenfeld T, Staab A, Seitz S, Boos W, Morita T, Aiba H, Mahr K, Titgemeyer F, Jahreis K. J Bacteriol; 2006 Aug 13; 188(15):5439-49. PubMed ID: 16855233 [Abstract] [Full Text] [Related]
17. A role for the interdomain linker region of the Escherichia coli CytR regulator in repression complex formation. Kallipolitis BH, Valentin-Hansen P. J Mol Biol; 2004 Sep 03; 342(1):1-7. PubMed ID: 15313602 [Abstract] [Full Text] [Related]
18. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif. Steinmetzer K, Hillisch A, Behlke J, Brantl S. Proteins; 2000 Mar 01; 38(4):393-406. PubMed ID: 10707026 [Abstract] [Full Text] [Related]
19. Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Sohanpal BK, Friar S, Roobol J, Plumbridge JA, Blomfield IC. Mol Microbiol; 2007 Feb 01; 63(4):1223-36. PubMed ID: 17238917 [Abstract] [Full Text] [Related]
20. Role of protein-protein bridging interactions on cooperative assembly of DNA-bound CRP-CytR-CRP complex and regulation of the Escherichia coli CytR regulon. Chahla M, Wooll J, Laue TM, Nguyen N, Senear DF. Biochemistry; 2003 Apr 08; 42(13):3812-25. PubMed ID: 12667072 [Abstract] [Full Text] [Related] Page: [Next] [New Search]