These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 18068706

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Cathepsin B responsiveness to glutathione and lipoic acid redox.
    Lockwood TD.
    Antioxid Redox Signal; 2002 Aug; 4(4):681-91. PubMed ID: 12230881
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation.
    Ho YS, Lai CS, Liu HI, Ho SY, Tai C, Pan MH, Wang YJ.
    Biochem Pharmacol; 2007 Jun 01; 73(11):1786-95. PubMed ID: 17403519
    [Abstract] [Full Text] [Related]

  • 5. Cys-His proteases are among the wired proteins of the cell.
    Lockwood TD.
    Arch Biochem Biophys; 2004 Dec 01; 432(1):12-24. PubMed ID: 15519292
    [Abstract] [Full Text] [Related]

  • 6. Inhibition of gelatinase B (matrix metalloproteinase-9) by dihydrolipoic acid.
    Cantin AM, Martel M, Drouin G, Paquette B.
    Can J Physiol Pharmacol; 2005 Mar 01; 83(3):301-8. PubMed ID: 15870844
    [Abstract] [Full Text] [Related]

  • 7. Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes.
    Suh JH, Zhu BZ, deSzoeke E, Frei B, Hagen TM.
    Redox Rep; 2004 Mar 01; 9(1):57-61. PubMed ID: 15035828
    [Abstract] [Full Text] [Related]

  • 8. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation.
    Scott BC, Aruoma OI, Evans PJ, O'Neill C, Van der Vliet A, Cross CE, Tritschler H, Halliwell B.
    Free Radic Res; 1994 Feb 01; 20(2):119-33. PubMed ID: 7516789
    [Abstract] [Full Text] [Related]

  • 9. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage.
    Wang YJ, Yang MC, Pan MH.
    Food Chem Toxicol; 2008 Dec 01; 46(12):3739-48. PubMed ID: 18951944
    [Abstract] [Full Text] [Related]

  • 10. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid.
    Trujillo M, Folkes L, Bartesaghi S, Kalyanaraman B, Wardman P, Radi R.
    Free Radic Biol Med; 2005 Jul 15; 39(2):279-88. PubMed ID: 15964519
    [Abstract] [Full Text] [Related]

  • 11. Plasmodium falciparum: biochemical characterization of the cysteine protease falcipain-2'.
    Singh N, Sijwali PS, Pandey KC, Rosenthal PJ.
    Exp Parasitol; 2006 Mar 15; 112(3):187-92. PubMed ID: 16337629
    [Abstract] [Full Text] [Related]

  • 12. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum.
    Sijwali PS, Koo J, Singh N, Rosenthal PJ.
    Mol Biochem Parasitol; 2006 Nov 15; 150(1):96-106. PubMed ID: 16890302
    [Abstract] [Full Text] [Related]

  • 13. Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation.
    Lapenna D, Ciofani G, Pierdomenico SD, Giamberardino MA, Cuccurullo F.
    Free Radic Biol Med; 2003 Nov 15; 35(10):1203-9. PubMed ID: 14607519
    [Abstract] [Full Text] [Related]

  • 14. [Inhibitory action of Fenton systems on topoisomerase I from Trypanosoma cruzi and Crithidia fasciculata]].
    Podesta D, Fernandez Villamil SH, Stoppani AO.
    Rev Argent Microbiol; 2003 Nov 15; 35(2):80-5. PubMed ID: 12920988
    [Abstract] [Full Text] [Related]

  • 15. Crystal structure of chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi.
    Figueiredo da Silva AA, de Carvalho Vieira L, Krieger MA, Goldenberg S, Zanchin NI, Guimarães BG.
    J Struct Biol; 2007 Feb 15; 157(2):416-23. PubMed ID: 17011790
    [Abstract] [Full Text] [Related]

  • 16. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum.
    Dahl EL, Rosenthal PJ.
    Mol Biochem Parasitol; 2005 Feb 15; 139(2):205-12. PubMed ID: 15664655
    [Abstract] [Full Text] [Related]

  • 17. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone.
    Kozlov AV, Gille L, Staniek K, Nohl H.
    Arch Biochem Biophys; 1999 Mar 01; 363(1):148-54. PubMed ID: 10049509
    [Abstract] [Full Text] [Related]

  • 18. Probing the cruzain S2 recognition subsite: a kinetic and binding energy calculation study.
    Polticelli F, Zaini G, Bolli A, Antonini G, Gradoni L, Ascenzi P.
    Biochemistry; 2005 Mar 01; 44(8):2781-9. PubMed ID: 15723522
    [Abstract] [Full Text] [Related]

  • 19. Photoinduced interactions between oxidized and reduced lipoic acid and riboflavin (vitamin B2).
    Lu C, Bucher G, Sander W.
    Chemphyschem; 2004 Jan 23; 5(1):47-56. PubMed ID: 14999843
    [Abstract] [Full Text] [Related]

  • 20. A chimeric cysteine protease of Plasmodium berghei engineered to resemble the Plasmodium falciparum protease falcipain-2.
    Singh A, Walker KJ, Sijwali PS, Lau AL, Rosenthal PJ.
    Protein Eng Des Sel; 2007 Apr 23; 20(4):171-7. PubMed ID: 17430972
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.