These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 18069664

  • 1. Computational protein design: software implementation, parameter optimization, and performance of a simple model.
    Schmidt Am Busch M, Lopes A, Mignon D, Simonson T.
    J Comput Chem; 2008 May; 29(7):1092-102. PubMed ID: 18069664
    [Abstract] [Full Text] [Related]

  • 2. Computational protein design as a tool for fold recognition.
    am Busch MS, Mignon D, Simonson T.
    Proteins; 2009 Oct; 77(1):139-58. PubMed ID: 19408297
    [Abstract] [Full Text] [Related]

  • 3. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M, Yanover C.
    Proteins; 2009 May 15; 75(3):682-705. PubMed ID: 19003998
    [Abstract] [Full Text] [Related]

  • 4. Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity.
    Pokala N, Handel TM.
    J Mol Biol; 2005 Mar 18; 347(1):203-27. PubMed ID: 15733929
    [Abstract] [Full Text] [Related]

  • 5. Another look at the conditions for the extraction of protein knowledge-based potentials.
    Betancourt MR.
    Proteins; 2009 Jul 18; 76(1):72-85. PubMed ID: 19089977
    [Abstract] [Full Text] [Related]

  • 6. Molecular dynamics in the endgame of protein structure prediction.
    Lee MR, Tsai J, Baker D, Kollman PA.
    J Mol Biol; 2001 Oct 19; 313(2):417-30. PubMed ID: 11800566
    [Abstract] [Full Text] [Related]

  • 7. Effective scoring function for protein sequence design.
    Liang S, Grishin NV.
    Proteins; 2004 Feb 01; 54(2):271-81. PubMed ID: 14696189
    [Abstract] [Full Text] [Related]

  • 8. A simple physical model for the prediction and design of protein-DNA interactions.
    Havranek JJ, Duarte CM, Baker D.
    J Mol Biol; 2004 Nov 12; 344(1):59-70. PubMed ID: 15504402
    [Abstract] [Full Text] [Related]

  • 9. ARTIST: an activated method in internal coordinate space for sampling protein energy landscapes.
    Yun MR, Lavery R, Mousseau N, Zakrzewska K, Derreumaux P.
    Proteins; 2006 Jun 01; 63(4):967-75. PubMed ID: 16523485
    [Abstract] [Full Text] [Related]

  • 10. Computational protein design with side-chain conformational entropy.
    Sciretti D, Bruscolini P, Pelizzola A, Pretti M, Jaramillo A.
    Proteins; 2009 Jan 01; 74(1):176-91. PubMed ID: 18618711
    [Abstract] [Full Text] [Related]

  • 11. YAKUSA: a fast structural database scanning method.
    Carpentier M, Brouillet S, Pothier J.
    Proteins; 2005 Oct 01; 61(1):137-51. PubMed ID: 16049912
    [Abstract] [Full Text] [Related]

  • 12. The elastic net algorithm and protein structure prediction.
    Ball KD, Erman B, Dill KA.
    J Comput Chem; 2002 Jan 15; 23(1):77-83. PubMed ID: 11913391
    [Abstract] [Full Text] [Related]

  • 13. Protein sequence design based on the topology of the native state structure.
    Jha AN, Ananthasuresh GK, Vishveshwara S.
    J Theor Biol; 2007 Sep 07; 248(1):81-90. PubMed ID: 17543996
    [Abstract] [Full Text] [Related]

  • 14. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A, Costantini S, di Serafino D, D'Apuzzo M, Facchiano A, Colonna G.
    Comput Biol Chem; 2008 Aug 07; 32(4):233-9. PubMed ID: 18479970
    [Abstract] [Full Text] [Related]

  • 15. Improving protein structure prediction with model-based search.
    Brunette TJ, Brock O.
    Bioinformatics; 2005 Jun 07; 21 Suppl 1():i66-74. PubMed ID: 15961500
    [Abstract] [Full Text] [Related]

  • 16. Exploring folding free energy landscapes using computational protein design.
    Kuhlman B, Baker D.
    Curr Opin Struct Biol; 2004 Feb 07; 14(1):89-95. PubMed ID: 15102454
    [Abstract] [Full Text] [Related]

  • 17. Evolutionary protein stabilization in comparison with computational design.
    Wunderlich M, Martin A, Staab CA, Schmid FX.
    J Mol Biol; 2005 Sep 02; 351(5):1160-8. PubMed ID: 16051264
    [Abstract] [Full Text] [Related]

  • 18. De novo protein design. II. Plasticity in sequence space.
    Koehl P, Levitt M.
    J Mol Biol; 1999 Nov 12; 293(5):1183-93. PubMed ID: 10547294
    [Abstract] [Full Text] [Related]

  • 19. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ.
    Methods Mol Biol; 2012 Nov 12; 899():127-44. PubMed ID: 22735950
    [Abstract] [Full Text] [Related]

  • 20. Routes are trees: the parsing perspective on protein folding.
    Hockenmaier J, Joshi AK, Dill KA.
    Proteins; 2007 Jan 01; 66(1):1-15. PubMed ID: 17063473
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.