These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 18069664

  • 41. Design of nucleic acid sequences for DNA computing based on a thermodynamic approach.
    Tanaka F, Kameda A, Yamamoto M, Ohuchi A.
    Nucleic Acids Res; 2005; 33(3):903-11. PubMed ID: 15701762
    [Abstract] [Full Text] [Related]

  • 42. Generation and analysis of proline mutants in protein G.
    Choi EJ, Mayo SL.
    Protein Eng Des Sel; 2006 Jun; 19(6):285-9. PubMed ID: 16549401
    [Abstract] [Full Text] [Related]

  • 43. From structure to sequence and back again.
    Hinds DA, Levitt M.
    J Mol Biol; 1996 Apr 26; 258(1):201-9. PubMed ID: 8613988
    [Abstract] [Full Text] [Related]

  • 44. QBES: predicting real values of solvent accessibility from sequences by efficient, constrained energy optimization.
    Xu Z, Zhang C, Liu S, Zhou Y.
    Proteins; 2006 Jun 01; 63(4):961-6. PubMed ID: 16514609
    [Abstract] [Full Text] [Related]

  • 45. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design.
    Humphris EL, Kortemme T.
    Structure; 2008 Dec 10; 16(12):1777-88. PubMed ID: 19081054
    [Abstract] [Full Text] [Related]

  • 46. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.
    Bueno M, Camacho CJ, Sancho J.
    Proteins; 2007 Sep 01; 68(4):850-62. PubMed ID: 17523191
    [Abstract] [Full Text] [Related]

  • 47. Long-timescale molecular dynamics simulations of protein structure and function.
    Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE.
    Curr Opin Struct Biol; 2009 Apr 01; 19(2):120-7. PubMed ID: 19361980
    [Abstract] [Full Text] [Related]

  • 48. Investigation of de novo totally random biosequences, Part II: On the folding frequency in a totally random library of de novo proteins obtained by phage display.
    Chiarabelli C, Vrijbloed JW, De Lucrezia D, Thomas RM, Stano P, Polticelli F, Ottone T, Papa E, Luisi PL.
    Chem Biodivers; 2006 Aug 01; 3(8):840-59. PubMed ID: 17193317
    [Abstract] [Full Text] [Related]

  • 49. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ, Flook PK, Yan L.
    Protein Eng Des Sel; 2008 Feb 01; 21(2):91-100. PubMed ID: 18194981
    [Abstract] [Full Text] [Related]

  • 50. Computational sidechain placement and protein mutagenesis with implicit solvent models.
    Lopes A, Alexandrov A, Bathelt C, Archontis G, Simonson T.
    Proteins; 2007 Jun 01; 67(4):853-67. PubMed ID: 17348031
    [Abstract] [Full Text] [Related]

  • 51. GSAFold: a new application of GSA to protein structure prediction.
    Melo MC, Bernardi RC, Fernandes TV, Pascutti PG.
    Proteins; 2012 Aug 01; 80(9):2305-10. PubMed ID: 22622959
    [Abstract] [Full Text] [Related]

  • 52. Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions.
    Chen J, Brooks CL.
    Phys Chem Chem Phys; 2008 Jan 28; 10(4):471-81. PubMed ID: 18183310
    [Abstract] [Full Text] [Related]

  • 53. Low-throughput model design of protein folding inhibitors.
    Broglia RA, Tiana G, Sutto L, Provasi D, Perelli V.
    Proteins; 2007 May 01; 67(2):469-78. PubMed ID: 17295323
    [Abstract] [Full Text] [Related]

  • 54. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H, Lu Z, Parks JM, Burger SK, Yang W.
    J Chem Phys; 2008 Jan 21; 128(3):034105. PubMed ID: 18205486
    [Abstract] [Full Text] [Related]

  • 55. Assessing the energy landscape of CAPRI targets by FunHunt.
    London N, Schueler-Furman O.
    Proteins; 2007 Dec 01; 69(4):809-15. PubMed ID: 17803233
    [Abstract] [Full Text] [Related]

  • 56. Computational redesign of a protein-protein interface for high affinity and binding specificity using modular architecture and naturally occurring template fragments.
    Potapov V, Reichmann D, Abramovich R, Filchtinski D, Zohar N, Ben Halevy D, Edelman M, Sobolev V, Schreiber G.
    J Mol Biol; 2008 Dec 05; 384(1):109-19. PubMed ID: 18804117
    [Abstract] [Full Text] [Related]

  • 57. A quantum chemical method for rapid optimization of protein structures.
    Wada M, Sakurai M.
    J Comput Chem; 2005 Jan 30; 26(2):160-8. PubMed ID: 15586398
    [Abstract] [Full Text] [Related]

  • 58. Prediction of local structural stabilities of proteins from their amino acid sequences.
    Tartaglia GG, Cavalli A, Vendruscolo M.
    Structure; 2007 Feb 30; 15(2):139-43. PubMed ID: 17292832
    [Abstract] [Full Text] [Related]

  • 59. Deconstructing the native state: energy landscapes, function, and dynamics of globular proteins.
    Zhuravlev PI, Materese CK, Papoian GA.
    J Phys Chem B; 2009 Jul 02; 113(26):8800-12. PubMed ID: 19453123
    [Abstract] [Full Text] [Related]

  • 60. Exact rotamer optimization for protein design.
    Gordon DB, Hom GK, Mayo SL, Pierce NA.
    J Comput Chem; 2003 Jan 30; 24(2):232-43. PubMed ID: 12497602
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.