These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 18070224
1. Age-dependent normative values for differential luminance sensitivity in automated static perimetry using the Octopus 101. Hermann A, Paetzold J, Vonthein R, Krapp E, Rauscher S, Schiefer U. Acta Ophthalmol; 2008 Jun; 86(4):446-55. PubMed ID: 18070224 [Abstract] [Full Text] [Related]
2. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry. Springer C, Bültmann S, Völcker HE, Rohrschneider K. Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065 [Abstract] [Full Text] [Related]
3. [Comparison of local differential luminance sensitivity (dls) between Oculus Twinfield Perimeter and Humphrey Field Analyzer 630 (HFA I) in normal volunteers of varying ages]. Lorch L, Dietrich TJ, Schwabe R, Schiefer U. Klin Monbl Augenheilkd; 2001 Dec; 218(12):782-94. PubMed ID: 11805870 [Abstract] [Full Text] [Related]
4. The normal age-corrected and reaction time-corrected isopter derived by semi-automated kinetic perimetry. Vonthein R, Rauscher S, Paetzold J, Nowomiejska K, Krapp E, Hermann A, Sadowski B, Chaumette C, Wild JM, Schiefer U. Ophthalmology; 2007 Jun; 114(6):1065-72. PubMed ID: 17331580 [Abstract] [Full Text] [Related]
5. [Variability of sensitivity thresholds in short-wavelength automated perimetry (SWAP) in the central vision field]. Polo Llorens V, Larrosa Poves JM, Pinilla Lozano I, Pablo Júlvez L, Rojo Aragües A, Cuevas Andrés R, Ruiz Moreno O, Honrubia López FM. Arch Soc Esp Oftalmol; 2000 Feb; 75(2):85-90. PubMed ID: 11151125 [Abstract] [Full Text] [Related]
6. [A study on retinal light sensitivity of normal human visual fields]. Yu MB, Zhou WB, Ye TC. Zhonghua Yan Ke Za Zhi; 1994 Sep; 30(5):341-4. PubMed ID: 7805534 [Abstract] [Full Text] [Related]
7. Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals. Casson EJ, Johnson CA, Nelson-Quigg JM. Invest Ophthalmol Vis Sci; 1993 Oct; 34(11):3096-102. PubMed ID: 8407217 [Abstract] [Full Text] [Related]
8. Effect of instructions on conventional automated perimetry. Kutzko KE, Brito CF, Wall M. Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):2006-13. PubMed ID: 10845628 [Abstract] [Full Text] [Related]
9. [Specificity of suprathreshold test methods in automated perimetry]. De Natale R, Gramer E, Krieglstein GK. Klin Monbl Augenheilkd; 1985 Feb; 186(2):110-3. PubMed ID: 3839032 [Abstract] [Full Text] [Related]
10. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1774-82. PubMed ID: 10845598 [Abstract] [Full Text] [Related]
12. [Automatic static quantitative perimetry of the central 30 degrees visual field in normal subjects]. Huang YF. Zhonghua Yan Ke Za Zhi; 1989 Mar; 25(2):90-3. PubMed ID: 2507260 [Abstract] [Full Text] [Related]
13. Frequency doubling technology perimetry in normal children. Quinn LM, Gardiner SK, Wheeler DT, Newkirk M, Johnson CA. Am J Ophthalmol; 2006 Dec; 142(6):983-9. PubMed ID: 17046702 [Abstract] [Full Text] [Related]
14. A comparison of cupola-free perimetry with conventional perimetry: preliminary results. Jenni A, Hirsbrunner HP. Jpn J Ophthalmol; 1990 Dec; 34(3):280-90. PubMed ID: 2079773 [Abstract] [Full Text] [Related]
15. Factors influencing reaction time during automated kinetic perimetry on the Tübingen computer campimeter. Becker ST, Vonthein R, Volpe NJ, Schiefer U. Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2633-8. PubMed ID: 15980258 [Abstract] [Full Text] [Related]
16. The different effects of aging on normal sensitivity in flicker and light-sense perimetry. Lachenmayr BJ, Kojetinsky S, Ostermaier N, Angstwurm K, Vivell PM, Schaumberger M. Invest Ophthalmol Vis Sci; 1994 May; 35(6):2741-8. PubMed ID: 8188467 [Abstract] [Full Text] [Related]
17. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking. Murray IC, Fleck BW, Brash HM, Macrae ME, Tan LL, Minns RA. Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207 [Abstract] [Full Text] [Related]
18. Adaptation mechanisms, eccentricity profiles, and clinical implementation of red-on-white perimetry. Zele AJ, Dang TM, O'Loughlin RK, Guymer RH, Harper A, Vingrys AJ. Optom Vis Sci; 2008 May; 85(5):309-17. PubMed ID: 18451735 [Abstract] [Full Text] [Related]
19. [White-on-white, blue-on-yellow and blue-on-blue perimetry in normal subjects]. Ayala-Barroso E, Sánchez Méndez M, González Hernández M, González de la Rosa MA. Arch Soc Esp Oftalmol; 2003 Nov; 78(11):609-14. PubMed ID: 14648367 [Abstract] [Full Text] [Related]
20. [Assessment of the macula function by static perimetry, microperimetry and rarebit perimetry in patients suffering from dry age related macular degeneration]. Nowomiejska K, Oleszczuk A, Zubilewicz A, Krukowski J, Mańkowska A, Rejdak R, Zagórski Z. Klin Oczna; 2007 Nov; 109(4-6):131-4. PubMed ID: 17725269 [Abstract] [Full Text] [Related] Page: [Next] [New Search]