These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 18072945

  • 1. Post-translational modification and proteolytic processing of urinary osteopontin.
    Christensen B, Petersen TE, Sørensen ES.
    Biochem J; 2008 Apr 01; 411(1):53-61. PubMed ID: 18072945
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Characterization of anti-osteopontin monoclonal antibodies: Binding sensitivity to post-translational modifications.
    Kazanecki CC, Kowalski AJ, Ding T, Rittling SR, Denhardt DT.
    J Cell Biochem; 2007 Nov 01; 102(4):925-35. PubMed ID: 17786932
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Chromogranin A from bovine adrenal medulla: molecular characterization of glycosylations, phosphorylations, and sequence heterogeneities by mass spectrometry.
    Bauer SH, Zhang XY, Van Dongen W, Claeys M, Przybylski M.
    Anal Biochem; 1999 Oct 01; 274(1):69-80. PubMed ID: 10527498
    [Abstract] [Full Text] [Related]

  • 7. Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy.
    Langdon A, Wignall GR, Rogers K, Sørensen ES, Denstedt J, Grohe B, Goldberg HA, Hunter GK.
    Calcif Tissue Int; 2009 Mar 01; 84(3):240-8. PubMed ID: 19189038
    [Abstract] [Full Text] [Related]

  • 8. Proteomic analysis and immunodetection of the bovine milk osteopontin isoforms.
    Bissonnette N, Dudemaine PL, Thibault C, Robitaille G.
    J Dairy Sci; 2012 Feb 01; 95(2):567-79. PubMed ID: 22281321
    [Abstract] [Full Text] [Related]

  • 9. Site-specific structural characterization of O-glycosylation and identification of phosphorylation sites of recombinant osteopontin.
    Li H, Shen H, Yan G, Zhang Y, Liu M, Fang P, Yu H, Yang P.
    Biochim Biophys Acta; 2015 Jun 01; 1854(6):581-91. PubMed ID: 25450502
    [Abstract] [Full Text] [Related]

  • 10. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties.
    Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES.
    J Biol Chem; 2007 Jul 06; 282(27):19463-72. PubMed ID: 17500062
    [Abstract] [Full Text] [Related]

  • 11. Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals.
    O'Young J, Chirico S, Al Tarhuni N, Grohe B, Karttunen M, Goldberg HA, Hunter GK.
    Cells Tissues Organs; 2009 Jul 06; 189(1-4):51-5. PubMed ID: 18728346
    [Abstract] [Full Text] [Related]

  • 12. Osteopontin is highly susceptible to cleavage in bovine milk and the proteolytic fragments bind the αVβ₃-integrin receptor.
    Christensen B, Sørensen ES.
    J Dairy Sci; 2014 Jul 06; 97(1):136-46. PubMed ID: 24268404
    [Abstract] [Full Text] [Related]

  • 13. Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D.
    Christensen B, Schack L, Kläning E, Sørensen ES.
    J Biol Chem; 2010 Mar 12; 285(11):7929-37. PubMed ID: 20071328
    [Abstract] [Full Text] [Related]

  • 14. Nucleocytoplasmic glycosylation, O-GlcNAc: identification and site mapping.
    Zachara NE, Cheung WD, Hart GW.
    Methods Mol Biol; 2004 Mar 12; 284():175-94. PubMed ID: 15173616
    [Abstract] [Full Text] [Related]

  • 15. Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin.
    Hunter GK, Grohe B, Jeffrey S, O'Young J, Sørensen ES, Goldberg HA.
    Cells Tissues Organs; 2009 Mar 12; 189(1-4):44-50. PubMed ID: 18703867
    [Abstract] [Full Text] [Related]

  • 16. Urinary concentration of osteopontin and association with urinary supersaturation and crystal formation.
    Tsuji H, Tohru U, Hirotsugu U, Masanori I, Yuji H, Takashi K.
    Int J Urol; 2007 Jul 12; 14(7):630-4. PubMed ID: 17645608
    [Abstract] [Full Text] [Related]

  • 17. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
    Grohe B, O'Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK.
    J Am Chem Soc; 2007 Dec 05; 129(48):14946-51. PubMed ID: 17994739
    [Abstract] [Full Text] [Related]

  • 18. Post-translational modifications of human thrombin-activatable fibrinolysis inhibitor (TAFI): evidence for a large shift in the isoelectric point and reduced solubility upon activation.
    Valnickova Z, Christensen T, Skottrup P, Thøgersen IB, Højrup P, Enghild JJ.
    Biochemistry; 2006 Feb 07; 45(5):1525-35. PubMed ID: 16445295
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. MAPRes: Mining association patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications.
    Ahmad I, Qazi WM, Khurshid A, Ahmad M, Hoessli DC, Khawaja I, Choudhary MI, Shakoori AR, Nasir-ud-Din.
    Proteomics; 2008 May 07; 8(10):1954-8. PubMed ID: 18491291
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.