These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


363 related items for PubMed ID: 18075122

  • 1. MEA-based recording of neuronal activity in vitro.
    Jimbo Y.
    Arch Ital Biol; 2007 Nov; 145(3-4):289-97. PubMed ID: 18075122
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I, Volman V, Raichman N, Shein M, Ben-Jacob E.
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [Abstract] [Full Text] [Related]

  • 4. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J, Wolters PS, Corner MA, Rutten WL, Ramakers GJ.
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [Abstract] [Full Text] [Related]

  • 5. Study of hypothermia on cultured neuronal networks using multi-electrode arrays.
    Rubinsky L, Raichman N, Baruchi I, Shein M, Lavee J, Frenk H, Ben-Jacob E.
    J Neurosci Methods; 2007 Mar 15; 160(2):288-93. PubMed ID: 17081617
    [Abstract] [Full Text] [Related]

  • 6. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y, Robinson HP, Kawana A.
    IEEE Trans Biomed Eng; 1998 Nov 15; 45(11):1297-304. PubMed ID: 9805828
    [Abstract] [Full Text] [Related]

  • 7. Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays.
    Van Pelt J, Corner MA, Wolters PS, Rutten WL, Ramakers GJ.
    Neurosci Lett; 2004 May 06; 361(1-3):86-9. PubMed ID: 15135900
    [Abstract] [Full Text] [Related]

  • 8. Spontaneous calcium transients in cultured cortical networks during development.
    Takayama Y, Moriguchi H, Kotani K, Jimbo Y.
    IEEE Trans Biomed Eng; 2009 Dec 06; 56(12):2949-56. PubMed ID: 19695995
    [Abstract] [Full Text] [Related]

  • 9. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G, Pan L, Huang L, Yu Z, Song X, Cheng J, Xing W, Zhou Y.
    Biosens Bioelectron; 2007 May 15; 22(11):2478-84. PubMed ID: 17071071
    [Abstract] [Full Text] [Related]

  • 10. Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior.
    Kudela P, Franaszczuk PJ, Bergey GK.
    Biol Cybern; 2003 Apr 15; 88(4):276-85. PubMed ID: 12690486
    [Abstract] [Full Text] [Related]

  • 11. The high-conductance state of cortical networks.
    Kumar A, Schrader S, Aertsen A, Rotter S.
    Neural Comput; 2008 Jan 15; 20(1):1-43. PubMed ID: 18044999
    [Abstract] [Full Text] [Related]

  • 12. Management of synchronized network activity by highly active neurons.
    Shein M, Volman V, Raichman N, Hanein Y, Ben-Jacob E.
    Phys Biol; 2008 Sep 09; 5(3):036008. PubMed ID: 18780962
    [Abstract] [Full Text] [Related]

  • 13. [Long-term changes in the efficiency of inhibitory transmission in the thalamocortical neuronal networks evoked by cortical microstimulation].
    Sil'kis IG.
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995 Sep 09; 45(3):538-50. PubMed ID: 7645329
    [Abstract] [Full Text] [Related]

  • 14. Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development.
    Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S.
    Brain Res; 2006 Jun 06; 1093(1):41-53. PubMed ID: 16712817
    [Abstract] [Full Text] [Related]

  • 15. Physiological consequences of selective suppression of synaptic transmission in developing cerebral cortical networks in vitro: differential effects on intrinsically generated bioelectric discharges in a living 'model' system for slow-wave sleep activity.
    Corner MA, Baker RE, van Pelt J.
    Neurosci Biobehav Rev; 2008 Oct 06; 32(8):1569-600. PubMed ID: 18722467
    [Abstract] [Full Text] [Related]

  • 16. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S.
    Neuroscience; 2008 Jun 02; 153(4):1354-69. PubMed ID: 18448256
    [Abstract] [Full Text] [Related]

  • 17. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities.
    Okun M, Lampl I.
    Nat Neurosci; 2008 May 02; 11(5):535-7. PubMed ID: 18376400
    [Abstract] [Full Text] [Related]

  • 18. Generation and control of cortical gamma: findings from simulation at two scales.
    Wright JJ.
    Neural Netw; 2009 May 02; 22(4):373-84. PubMed ID: 19095406
    [Abstract] [Full Text] [Related]

  • 19. Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects.
    van Vliet E, Stoppini L, Balestrino M, Eskes C, Griesinger C, Sobanski T, Whelan M, Hartung T, Coecke S.
    Neurotoxicology; 2007 Nov 02; 28(6):1136-46. PubMed ID: 17692379
    [Abstract] [Full Text] [Related]

  • 20. Low-frequency stimulation enhances burst activity in cortical cultures during development.
    Bologna LL, Nieus T, Tedesco M, Chiappalone M, Benfenati F, Martinoia S.
    Neuroscience; 2010 Feb 03; 165(3):692-704. PubMed ID: 19922773
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.