These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


763 related items for PubMed ID: 18159942

  • 41. Anopheles mosquitoes: not just flying malaria vectors... especially in the field.
    Boëte C.
    Trends Parasitol; 2009 Feb; 25(2):53-5. PubMed ID: 19095498
    [Abstract] [Full Text] [Related]

  • 42. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites.
    Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC.
    Exp Parasitol; 2001 Jul; 98(3):152-61. PubMed ID: 11527438
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Re-ingestion of Plasmodium berghei sporozoites after delivery into the host by mosquitoes.
    Kebaier C, Vanderberg JP.
    Am J Trop Med Hyg; 2006 Dec; 75(6):1200-4. PubMed ID: 17172393
    [Abstract] [Full Text] [Related]

  • 46. PbGCbeta is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite life cycle in mosquitoes.
    Hirai M, Arai M, Kawai S, Matsuoka H.
    J Biochem; 2006 Nov; 140(5):747-57. PubMed ID: 17030505
    [Abstract] [Full Text] [Related]

  • 47. A shared genetic mechanism for melanotic encapsulation of CM-Sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae.
    Gorman MJ, Cornel AJ, Collins FH, Paskewitz SM.
    Exp Parasitol; 1996 Dec; 84(3):380-6. PubMed ID: 8948327
    [Abstract] [Full Text] [Related]

  • 48. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae).
    Chugh M, Adak T, Sehrawat N, Gakhar SK.
    Indian J Exp Biol; 2011 Apr; 49(4):245-53. PubMed ID: 21614887
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Effect of variation in temperature on development of Plasmodium berghei (NK 65 strain) in Anopheles stephensi.
    Rastogi M, Pal NL, Sen AB.
    Folia Parasitol (Praha); 1987 Apr; 34(4):289-97. PubMed ID: 3322990
    [Abstract] [Full Text] [Related]

  • 51. Role of heat-labile serum factor or host complement in the inhibition of Plasmodium falciparum sporogonic stages in Anopheles stephensi by gametocyte carriers' serological factors.
    Gouagna LC, van der Kolk M, Roeffen W, Verhave JP, Eling W, Sauerwein R, Boudin C.
    Parasitology; 2007 Sep; 134(Pt 10):1315-27. PubMed ID: 17645813
    [Abstract] [Full Text] [Related]

  • 52. Stage-specific effects of host plasma factors on the early sporogony of autologous Plasmodium falciparum isolates within Anopheles gambiae.
    Gouagna LC, Bonnet S, Gounoue R, Verhave JP, Eling W, Sauerwein R, Boudin C.
    Trop Med Int Health; 2004 Sep; 9(9):937-48. PubMed ID: 15361106
    [Abstract] [Full Text] [Related]

  • 53. Malaria parasite development in mosquitoes.
    Beier JC.
    Annu Rev Entomol; 1998 Sep; 43():519-43. PubMed ID: 9444756
    [Abstract] [Full Text] [Related]

  • 54. Plasmodium berghei HAP2 induces strong malaria transmission-blocking immunity in vivo and in vitro.
    Blagborough AM, Sinden RE.
    Vaccine; 2009 Aug 20; 27(38):5187-94. PubMed ID: 19596419
    [Abstract] [Full Text] [Related]

  • 55. Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei.
    Raibaud A, Brahimi K, Roth CW, Brey PT, Faust DM.
    Mol Biochem Parasitol; 2006 Nov 20; 150(1):107-13. PubMed ID: 16908078
    [Abstract] [Full Text] [Related]

  • 56. The development and evaluation of a single step multiplex PCR for simultaneous detection of Anopheles annularis group mosquitoes, human host preference and Plasmodium falciparum sporozoite presence.
    Swain S, Mohanty A, Mahapatra N, Parida SK, Marai NS, Tripathy HK, Kar SK, Hazra RK.
    Trans R Soc Trop Med Hyg; 2009 Nov 20; 103(11):1146-52. PubMed ID: 19394991
    [Abstract] [Full Text] [Related]

  • 57. Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship.
    Lal AA, Patterson PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF.
    Proc Natl Acad Sci U S A; 2001 Apr 24; 98(9):5228-33. PubMed ID: 11309510
    [Abstract] [Full Text] [Related]

  • 58. Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin.
    Dia I, Konate L, Samb B, Sarr JB, Diop A, Rogerie F, Faye M, Riveau G, Remoue F, Diallo M, Fontenille D.
    Acta Trop; 2008 Feb 24; 105(2):145-53. PubMed ID: 18068685
    [Abstract] [Full Text] [Related]

  • 59. Influence of midgut microbiota in Anopheles stephensi on Plasmodium berghei infections.
    Kalappa DM, Subramani PA, Basavanna SK, Ghosh SK, Sundaramurthy V, Uragayala S, Tiwari S, Anvikar AR, Valecha N.
    Malar J; 2018 Oct 25; 17(1):385. PubMed ID: 30359252
    [Abstract] [Full Text] [Related]

  • 60. Differential roles of an Anopheline midgut GPI-anchored protein in mediating Plasmodium falciparum and Plasmodium vivax ookinete invasion.
    Mathias DK, Jardim JG, Parish LA, Armistead JS, Trinh HV, Kumpitak C, Sattabongkot J, Dinglasan RR.
    Infect Genet Evol; 2014 Dec 25; 28():635-47. PubMed ID: 24929123
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 39.