These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
316 related items for PubMed ID: 18160514
1. Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens. Rafii F, Park M, Bryant AE, Johnson SJ, Wagner RD. Antimicrob Agents Chemother; 2008 Mar; 52(3):895-900. PubMed ID: 18160514 [Abstract] [Full Text] [Related]
2. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene. Méndez MB, Goñi A, Ramirez W, Grau RR. Microb Pathog; 2012 Jan; 52(1):85-91. PubMed ID: 22079896 [Abstract] [Full Text] [Related]
3. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues. O'Brien DK, Melville SB. Infect Immun; 2004 Sep; 72(9):5204-15. PubMed ID: 15322015 [Abstract] [Full Text] [Related]
4. The presence of differentiated C2C12 muscle cells enhances toxin production and growth by Clostridium perfringens type A strain ATCC3624. Li J, Sayeed S, McClane BA. Virulence; 2024 Dec; 15(1):2388219. PubMed ID: 39192628 [Abstract] [Full Text] [Related]
5. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Awad MM, Ellemor DM, Boyd RL, Emmins JJ, Rood JI. Infect Immun; 2001 Dec; 69(12):7904-10. PubMed ID: 11705975 [Abstract] [Full Text] [Related]
11. Dynamics of plc gene transcription and alpha-toxin production during growth of Clostridium perfringens strains with contrasting alpha-toxin production. Abildgaard L, Schramm A, Rudi K, Højberg O. Vet Microbiol; 2009 Oct 20; 139(1-2):202-6. PubMed ID: 19559545 [Abstract] [Full Text] [Related]
12. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers. Moe PC, Heuck AP. Biochemistry; 2010 Nov 09; 49(44):9498-507. PubMed ID: 20886855 [Abstract] [Full Text] [Related]
13. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Vidal JE, Ohtani K, Shimizu T, McClane BA. Cell Microbiol; 2009 Sep 09; 11(9):1306-28. PubMed ID: 19438515 [Abstract] [Full Text] [Related]
14. Substitutions of amino acids in alpha-helix-4 of gyrase A confer fluoroquinolone resistance on Clostridium perfringens. Rafii F, Park M. Arch Microbiol; 2007 Feb 09; 187(2):137-44. PubMed ID: 17051403 [Abstract] [Full Text] [Related]
15. Regulation of extracellular toxin production in Clostridium perfringens. Rood JI, Lyristis M. Trends Microbiol; 1995 May 09; 3(5):192-6. PubMed ID: 7627457 [Abstract] [Full Text] [Related]
16. Perfringolysin O: The Underrated Clostridium perfringens Toxin? Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F. Toxins (Basel); 2015 May 14; 7(5):1702-21. PubMed ID: 26008232 [Abstract] [Full Text] [Related]
17. Effect of fluoroquinolone resistance selection on the fitness of three strains of Clostridium perfringens. Park M, Sutherland JB, Kim JN, Rafii F. Microb Drug Resist; 2013 Dec 14; 19(6):421-7. PubMed ID: 23789809 [Abstract] [Full Text] [Related]