These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 18160514

  • 1. Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens.
    Rafii F, Park M, Bryant AE, Johnson SJ, Wagner RD.
    Antimicrob Agents Chemother; 2008 Mar; 52(3):895-900. PubMed ID: 18160514
    [Abstract] [Full Text] [Related]

  • 2. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene.
    Méndez MB, Goñi A, Ramirez W, Grau RR.
    Microb Pathog; 2012 Jan; 52(1):85-91. PubMed ID: 22079896
    [Abstract] [Full Text] [Related]

  • 3. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues.
    O'Brien DK, Melville SB.
    Infect Immun; 2004 Sep; 72(9):5204-15. PubMed ID: 15322015
    [Abstract] [Full Text] [Related]

  • 4. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene.
    Awad MM, Ellemor DM, Boyd RL, Emmins JJ, Rood JI.
    Infect Immun; 2001 Dec; 69(12):7904-10. PubMed ID: 11705975
    [Abstract] [Full Text] [Related]

  • 5. Comparative transcription analysis and toxin production of two fluoroquinolone-resistant mutants of Clostridium perfringens.
    Park S, Park M, Rafii F.
    BMC Microbiol; 2013 Mar 01; 13():50. PubMed ID: 23452396
    [Abstract] [Full Text] [Related]

  • 6. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene.
    Awad MM, Bryant AE, Stevens DL, Rood JI.
    Mol Microbiol; 1995 Jan 01; 15(2):191-202. PubMed ID: 7746141
    [Abstract] [Full Text] [Related]

  • 7. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J, Stirewalt VL, Melville SB.
    J Bacteriol; 2004 Aug 01; 186(16):5221-9. PubMed ID: 15292123
    [Abstract] [Full Text] [Related]

  • 8. Comparison of the metabolic activities of four wild-type Clostridium perfringens strains with their gatifloxacin-selected resistant mutants.
    Rafii F, Park M, Gamboa da Costa G, Camacho L.
    Arch Microbiol; 2009 Dec 01; 191(12):895-902. PubMed ID: 19855959
    [Abstract] [Full Text] [Related]

  • 9. Non-toxic perfringolysin O and α-toxin derivatives as potential vaccine candidates against bovine necrohaemorrhagic enteritis.
    Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Van Immerseel F.
    Vet J; 2016 Nov 01; 217():89-94. PubMed ID: 27810219
    [Abstract] [Full Text] [Related]

  • 10. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues.
    Yagi H, Nakayama-Imaohji H, Nariya H, Tada A, Yamasaki H, Ugai H, Elahi M, Ono T, Kuwahara T.
    Microb Pathog; 2018 Jun 01; 119():200-207. PubMed ID: 29654901
    [Abstract] [Full Text] [Related]

  • 11. Dynamics of plc gene transcription and alpha-toxin production during growth of Clostridium perfringens strains with contrasting alpha-toxin production.
    Abildgaard L, Schramm A, Rudi K, Højberg O.
    Vet Microbiol; 2009 Oct 20; 139(1-2):202-6. PubMed ID: 19559545
    [Abstract] [Full Text] [Related]

  • 12. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers.
    Moe PC, Heuck AP.
    Biochemistry; 2010 Nov 09; 49(44):9498-507. PubMed ID: 20886855
    [Abstract] [Full Text] [Related]

  • 13. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates.
    Vidal JE, Ohtani K, Shimizu T, McClane BA.
    Cell Microbiol; 2009 Sep 09; 11(9):1306-28. PubMed ID: 19438515
    [Abstract] [Full Text] [Related]

  • 14. Substitutions of amino acids in alpha-helix-4 of gyrase A confer fluoroquinolone resistance on Clostridium perfringens.
    Rafii F, Park M.
    Arch Microbiol; 2007 Feb 09; 187(2):137-44. PubMed ID: 17051403
    [Abstract] [Full Text] [Related]

  • 15. Regulation of extracellular toxin production in Clostridium perfringens.
    Rood JI, Lyristis M.
    Trends Microbiol; 1995 May 09; 3(5):192-6. PubMed ID: 7627457
    [Abstract] [Full Text] [Related]

  • 16. Perfringolysin O: The Underrated Clostridium perfringens Toxin?
    Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F.
    Toxins (Basel); 2015 May 14; 7(5):1702-21. PubMed ID: 26008232
    [Abstract] [Full Text] [Related]

  • 17. Effect of fluoroquinolone resistance selection on the fitness of three strains of Clostridium perfringens.
    Park M, Sutherland JB, Kim JN, Rafii F.
    Microb Drug Resist; 2013 Dec 14; 19(6):421-7. PubMed ID: 23789809
    [Abstract] [Full Text] [Related]

  • 18. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model.
    Fernandez-Miyakawa ME, Jost BH, Billington SJ, Uzal FA.
    Vet Microbiol; 2008 Mar 18; 127(3-4):379-85. PubMed ID: 17997054
    [Abstract] [Full Text] [Related]

  • 19. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens.
    Ohtani K, Bhowmik SK, Hayashi H, Shimizu T.
    FEMS Microbiol Lett; 2002 Mar 19; 209(1):113-8. PubMed ID: 12007663
    [Abstract] [Full Text] [Related]

  • 20. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens.
    Ohtani K, Hayashi H, Shimizu T.
    Mol Microbiol; 2002 Apr 19; 44(1):171-9. PubMed ID: 11967077
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.