These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


263 related items for PubMed ID: 18165297

  • 1. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134.
    Belchik SM, Xun L.
    J Bacteriol; 2008 Mar; 190(5):1615-9. PubMed ID: 18165297
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134.
    Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C.
    Int J Mol Sci; 2012 Mar; 13(8):9769-9784. PubMed ID: 22949829
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Ortho and para oxydehalogenation of dihalophenols catalyzed by the monooxygenase TcpA and NAD(P)H:FAD reductase Fre.
    Fang L, Qin H, Shi T, Wu X, Li QX, Hua R.
    J Hazard Mater; 2020 Apr 15; 388():121787. PubMed ID: 31818658
    [Abstract] [Full Text] [Related]

  • 8. Kinetics and Catabolic Pathways of the Insecticide Chlorpyrifos, Annotation of the Degradation Genes, and Characterization of Enzymes TcpA and Fre in Cupriavidus nantongensis X1T.
    Fang L, Shi T, Chen Y, Wu X, Zhang C, Tang X, Li QX, Hua R.
    J Agric Food Chem; 2019 Feb 27; 67(8):2245-2254. PubMed ID: 30721044
    [Abstract] [Full Text] [Related]

  • 9. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase.
    Koch K, Hromic A, Sorokina M, Strandback E, Reisinger M, Gruber K, Macheroux P.
    Biochim Biophys Acta Proteins Proteom; 2017 Aug 27; 1865(8):1046-1056. PubMed ID: 28499769
    [Abstract] [Full Text] [Related]

  • 10. Functional and structural characterization of a thermostable flavin reductase from Geobacillus mahadii Geo-05.
    Husain NAC, Jamaluddin H, Jonet MA.
    Int J Biol Macromol; 2024 Aug 27; 275(Pt 2):133721. PubMed ID: 38986972
    [Abstract] [Full Text] [Related]

  • 11. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmid A.
    J Bacteriol; 2004 Aug 27; 186(16):5292-302. PubMed ID: 15292130
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M, Ramaswamy S, Nivière V, Fontecave M, Eklund H.
    Biochemistry; 1999 Jun 01; 38(22):7040-9. PubMed ID: 10353815
    [Abstract] [Full Text] [Related]

  • 13. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I, Truan G, Peterson JA.
    Biochemistry; 1996 Jun 11; 35(23):7528-35. PubMed ID: 8652532
    [Abstract] [Full Text] [Related]

  • 14. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P.
    J Bacteriol; 2008 Mar 11; 190(5):1531-8. PubMed ID: 18156264
    [Abstract] [Full Text] [Related]

  • 15. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.
    Webb BN, Ballinger JW, Kim E, Belchik SM, Lam KS, Youn B, Nissen MS, Xun L, Kang C.
    J Biol Chem; 2010 Jan 15; 285(3):2014-27. PubMed ID: 19915006
    [Abstract] [Full Text] [Related]

  • 16. A beta-barrel outer membrane protein facilitates cellular uptake of polychlorophenols in Cupriavidus necator.
    Belchik SM, Schaeffer SM, Hasenoehrl S, Xun L.
    Biodegradation; 2010 Jun 15; 21(3):431-9. PubMed ID: 19937267
    [Abstract] [Full Text] [Related]

  • 17. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase.
    Louie TM, Yang H, Karnchanaphanurach P, Xie XS, Xun L.
    J Biol Chem; 2002 Oct 18; 277(42):39450-5. PubMed ID: 12177066
    [Abstract] [Full Text] [Related]

  • 18. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M, Fontecave M, Macherel D, Covès J.
    Biochemistry; 1998 Apr 28; 37(17):6114-23. PubMed ID: 9558350
    [Abstract] [Full Text] [Related]

  • 19. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE, Tu SC.
    Biochemistry; 2001 Feb 13; 40(6):1749-54. PubMed ID: 11327836
    [Abstract] [Full Text] [Related]

  • 20. Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans.
    Sedláček V, Klumpler T, Marek J, Kučera I.
    Microbiol Res; 2016 Feb 13; 188-189():9-22. PubMed ID: 27296958
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.