These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 18166164
1. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson's disease explained via in silico studies. Jagatha B, Mythri RB, Vali S, Bharath MM. Free Radic Biol Med; 2008 Mar 01; 44(5):907-17. PubMed ID: 18166164 [Abstract] [Full Text] [Related]
2. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson's disease. Harish G, Venkateshappa C, Mythri RB, Dubey SK, Mishra K, Singh N, Vali S, Bharath MM. Bioorg Med Chem; 2010 Apr 01; 18(7):2631-8. PubMed ID: 20227282 [Abstract] [Full Text] [Related]
3. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease. Chinta SJ, Andersen JK. Free Radic Biol Med; 2006 Nov 01; 41(9):1442-8. PubMed ID: 17023271 [Abstract] [Full Text] [Related]
4. Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson's disease. Verma R, Nehru B. Neurochem Int; 2009 Nov 01; 55(6):369-75. PubMed ID: 19375462 [Abstract] [Full Text] [Related]
6. Overproduction of Cu/Zn-superoxide dismutase or Bcl-2 prevents the brain mitochondrial respiratory dysfunction induced by glutathione depletion. Mérad-Saïdoune M, Boitier E, Nicole A, Marsac C, Martinou JC, Sola B, Sinet PM, Ceballos-Picot I. Exp Neurol; 1999 Aug 01; 158(2):428-36. PubMed ID: 10415149 [Abstract] [Full Text] [Related]
7. Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. White AR, Cappai R. J Neurosci Res; 2003 Mar 15; 71(6):889-97. PubMed ID: 12605416 [Abstract] [Full Text] [Related]
8. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Free Radic Res; 2005 Oct 15; 39(10):1119-25. PubMed ID: 16298737 [Abstract] [Full Text] [Related]
9. Characterization of the role of glutathione in repin-induced mitochondrial dysfunction, oxidative stress and dopaminergic neurotoxicity in rat pheochromocytoma (PC12) cells. Tukov FF, Rimoldi JM, Matthews JC. Neurotoxicology; 2004 Dec 15; 25(6):989-99. PubMed ID: 15474617 [Abstract] [Full Text] [Related]
10. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson's disease: a dynamic model. Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MM. Neuroscience; 2007 Nov 23; 149(4):917-30. PubMed ID: 17936517 [Abstract] [Full Text] [Related]
11. Neurotoxicity from glutathione depletion is mediated by Cu-dependent p53 activation. Du T, Ciccotosto GD, Cranston GA, Kocak G, Masters CL, Crouch PJ, Cappai R, White AR. Free Radic Biol Med; 2008 Jan 01; 44(1):44-55. PubMed ID: 18045546 [Abstract] [Full Text] [Related]
12. In vitro and in vivo neuroprotection by gamma-glutamylcysteine ethyl ester against MPTP: relevance to the role of glutathione in Parkinson's disease. Chinta SJ, Rajagopalan S, Butterfield DA, Andersen JK. Neurosci Lett; 2006 Jul 10; 402(1-2):137-41. PubMed ID: 16644116 [Abstract] [Full Text] [Related]
13. Pre-treatment with R-lipoic acid alleviates the effects of GSH depletion in PC12 cells: implications for Parkinson's disease therapy. Bharat S, Cochran BC, Hsu M, Liu J, Ames BN, Andersen JK. Neurotoxicology; 2002 Oct 10; 23(4-5):479-86. PubMed ID: 12428720 [Abstract] [Full Text] [Related]
14. Direct evidence for glutathione as mediator of apoptosis in neuronal cells. Nicole A, Santiard-Baron D, Ceballos-Picot I. Biomed Pharmacother; 1998 Oct 10; 52(9):349-55. PubMed ID: 9856280 [Abstract] [Full Text] [Related]
15. Levodopa is toxic to dopamine neurons in an in vitro but not an in vivo model of oxidative stress. Mytilineou C, Walker RH, JnoBaptiste R, Olanow CW. J Pharmacol Exp Ther; 2003 Feb 10; 304(2):792-800. PubMed ID: 12538835 [Abstract] [Full Text] [Related]
16. Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity. Diwakar L, Kenchappa RS, Annepu J, Ravindranath V. Neurochem Int; 2007 Jul 10; 51(1):37-46. PubMed ID: 17512091 [Abstract] [Full Text] [Related]
17. Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Barker JE, Heales SJ, Cassidy A, Bolaños JP, Land JM, Clark JB. Brain Res; 1996 Apr 15; 716(1-2):118-22. PubMed ID: 8738227 [Abstract] [Full Text] [Related]
18. Elevation of mitochondrial glutathione by gamma-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. Drake J, Sultana R, Aksenova M, Calabrese V, Butterfield DA. J Neurosci Res; 2003 Dec 15; 74(6):917-27. PubMed ID: 14648597 [Abstract] [Full Text] [Related]
19. Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson's disease. Bharath S, Andersen JK. Antioxid Redox Signal; 2005 Dec 15; 7(7-8):900-10. PubMed ID: 15998245 [Abstract] [Full Text] [Related]
20. Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Núñez MT, Gallardo V, Muñoz P, Tapia V, Esparza A, Salazar J, Speisky H. Free Radic Biol Med; 2004 Oct 01; 37(7):953-60. PubMed ID: 15336311 [Abstract] [Full Text] [Related] Page: [Next] [New Search]