These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


748 related items for PubMed ID: 18178660

  • 1. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A, Müller P, Stöckl M, Herrmann A, Huster D.
    Biophys J; 2008 Apr 01; 94(7):2680-90. PubMed ID: 18178660
    [Abstract] [Full Text] [Related]

  • 2. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy.
    Bartels T, Lankalapalli RS, Bittman R, Beyer K, Brown MF.
    J Am Chem Soc; 2008 Nov 05; 130(44):14521-32. PubMed ID: 18839945
    [Abstract] [Full Text] [Related]

  • 3. Phase diagram of ternary cholesterol/palmitoylsphingomyelin/palmitoyloleoyl-phosphatidylcholine mixtures: spin-label EPR study of lipid-raft formation.
    Ionova IV, Livshits VA, Marsh D.
    Biophys J; 2012 Apr 18; 102(8):1856-65. PubMed ID: 22768941
    [Abstract] [Full Text] [Related]

  • 4. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts.
    de Almeida RF, Fedorov A, Prieto M.
    Biophys J; 2003 Oct 18; 85(4):2406-16. PubMed ID: 14507704
    [Abstract] [Full Text] [Related]

  • 5. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol.
    Veatch SL, Keller SL.
    Biophys J; 2003 Nov 18; 85(5):3074-83. PubMed ID: 14581208
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid.
    Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M.
    Biophys J; 2007 Jan 15; 92(2):502-16. PubMed ID: 17056734
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study.
    Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R.
    Biochim Biophys Acta; 2006 Feb 15; 1758(2):248-58. PubMed ID: 16529710
    [Abstract] [Full Text] [Related]

  • 11. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F, Tavares M, Dufourc EJ.
    Biochemistry; 2003 Feb 18; 42(6):1383-90. PubMed ID: 12578350
    [Abstract] [Full Text] [Related]

  • 12. Non-raft forming sphingomyelin-cholesterol mixtures.
    Epand RM, Epand RF.
    Chem Phys Lipids; 2004 Nov 18; 132(1):37-46. PubMed ID: 15530446
    [Abstract] [Full Text] [Related]

  • 13. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study.
    Periasamy N, Winter R.
    Biochim Biophys Acta; 2006 Mar 18; 1764(3):398-404. PubMed ID: 16330267
    [Abstract] [Full Text] [Related]

  • 14. Formation of ceramide/sphingomyelin gel domains in the presence of an unsaturated phospholipid: a quantitative multiprobe approach.
    Castro BM, de Almeida RF, Silva LC, Fedorov A, Prieto M.
    Biophys J; 2007 Sep 01; 93(5):1639-50. PubMed ID: 17496019
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P, London E.
    Biophys J; 2011 Nov 16; 101(10):2417-25. PubMed ID: 22098740
    [Abstract] [Full Text] [Related]

  • 17. Miscibility phase diagrams of giant vesicles containing sphingomyelin.
    Veatch SL, Keller SL.
    Phys Rev Lett; 2005 Apr 15; 94(14):148101. PubMed ID: 15904115
    [Abstract] [Full Text] [Related]

  • 18. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine.
    Aittoniemi J, Niemelä PS, Hyvönen MT, Karttunen M, Vattulainen I.
    Biophys J; 2007 Feb 15; 92(4):1125-37. PubMed ID: 17114220
    [Abstract] [Full Text] [Related]

  • 19. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM, Feigenson GW.
    Biochim Biophys Acta; 2016 Jan 15; 1858(1):153-61. PubMed ID: 26525664
    [Abstract] [Full Text] [Related]

  • 20. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M.
    Biochim Biophys Acta; 2013 Sep 15; 1828(9):2099-110. PubMed ID: 23702462
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.