These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 18191146

  • 1. Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways.
    Sapra KT, Balasubramanian GP, Labudde D, Bowie JU, Muller DJ.
    J Mol Biol; 2008 Feb 29; 376(4):1076-90. PubMed ID: 18191146
    [Abstract] [Full Text] [Related]

  • 2. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Müller DJ.
    Structure; 2004 May 29; 12(5):871-9. PubMed ID: 15130479
    [Abstract] [Full Text] [Related]

  • 3. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ, Kim JM, Khorana HG, Lu H, Booth PJ.
    J Mol Biol; 2001 Apr 27; 308(2):423-35. PubMed ID: 11327777
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy.
    Sapra KT, Besir H, Oesterhelt D, Muller DJ.
    J Mol Biol; 2006 Jan 27; 355(4):640-50. PubMed ID: 16330046
    [Abstract] [Full Text] [Related]

  • 6. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy.
    Jacobson DR, Perkins TT.
    Proc Natl Acad Sci U S A; 2021 Mar 30; 118(13):. PubMed ID: 33753487
    [Abstract] [Full Text] [Related]

  • 7. Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by AFM.
    Kessler M, Gaub HE.
    Structure; 2006 Mar 30; 14(3):521-7. PubMed ID: 16531236
    [Abstract] [Full Text] [Related]

  • 8. Thermodynamic stability of bacteriorhodopsin mutants measured relative to the bacterioopsin unfolded state.
    Cao Z, Schlebach JP, Park C, Bowie JU.
    Biochim Biophys Acta; 2012 Apr 30; 1818(4):1049-54. PubMed ID: 21880269
    [Abstract] [Full Text] [Related]

  • 9. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase.
    Matthews JM, Fersht AR.
    Biochemistry; 1995 May 23; 34(20):6805-14. PubMed ID: 7756312
    [Abstract] [Full Text] [Related]

  • 10. Free energy of membrane protein unfolding derived from single-molecule force measurements.
    Preiner J, Janovjak H, Rankl C, Knaus H, Cisneros DA, Kedrov A, Kienberger F, Muller DJ, Hinterdorfer P.
    Biophys J; 2007 Aug 01; 93(3):930-7. PubMed ID: 17483176
    [Abstract] [Full Text] [Related]

  • 11. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H, Booth PJ.
    J Mol Biol; 2000 May 26; 299(1):233-43. PubMed ID: 10860735
    [Abstract] [Full Text] [Related]

  • 12. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins.
    Yu H, Siewny MG, Edwards DT, Sanders AW, Perkins TT.
    Science; 2017 Mar 03; 355(6328):945-950. PubMed ID: 28254940
    [Abstract] [Full Text] [Related]

  • 13. Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin.
    Sapra KT, Doehner J, Renugopalakrishnan V, Padrós E, Muller DJ.
    Biophys J; 2008 Oct 03; 95(7):3407-18. PubMed ID: 18621827
    [Abstract] [Full Text] [Related]

  • 14. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.
    Heenan PR, Yu H, Siewny MGW, Perkins TT.
    J Chem Phys; 2018 Mar 28; 148(12):123313. PubMed ID: 29604885
    [Abstract] [Full Text] [Related]

  • 15. Dual energy landscape: the functional state of the β-barrel outer membrane protein G molds its unfolding energy landscape.
    Damaghi M, Sapra KT, Köster S, Yildiz Ö, Kühlbrandt W, Muller DJ.
    Proteomics; 2010 Dec 28; 10(23):4151-62. PubMed ID: 21058339
    [Abstract] [Full Text] [Related]

  • 16. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA, Oesterhelt D, Müller DJ.
    Structure; 2005 Feb 28; 13(2):235-42. PubMed ID: 15698567
    [Abstract] [Full Text] [Related]

  • 17. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions.
    Chen GQ, Gouaux E.
    Biochemistry; 1999 Nov 16; 38(46):15380-7. PubMed ID: 10563824
    [Abstract] [Full Text] [Related]

  • 18. Transmembrane helix-helix association: relative stabilities at low pH.
    Valluru N, Silva F, Dhage M, Rodriguez G, Alloor SR, Renthal R.
    Biochemistry; 2006 Apr 11; 45(14):4371-7. PubMed ID: 16584172
    [Abstract] [Full Text] [Related]

  • 19. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H, Marti T, Booth PJ.
    J Mol Biol; 2001 Apr 27; 308(2):437-46. PubMed ID: 11327778
    [Abstract] [Full Text] [Related]

  • 20. Unfolding pathways of native bacteriorhodopsin depend on temperature.
    Janovjak H, Kessler M, Oesterhelt D, Gaub H, Müller DJ.
    EMBO J; 2003 Oct 01; 22(19):5220-9. PubMed ID: 14517259
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.