These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


255 related items for PubMed ID: 18191379

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A constitutive model of the human vocal fold cover for fundamental frequency regulation.
    Zhang K, Siegmund T, Chan RW.
    J Acoust Soc Am; 2006 Feb; 119(2):1050-62. PubMed ID: 16521767
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study.
    Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW.
    J Acoust Soc Am; 2013 Mar; 133(3):1625-36. PubMed ID: 23464032
    [Abstract] [Full Text] [Related]

  • 7. A two-layer composite model of the vocal fold lamina propria for fundamental frequency regulation.
    Zhang K, Siegmund T, Chan RW.
    J Acoust Soc Am; 2007 Aug; 122(2):1090-101. PubMed ID: 17672656
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Vocal fold dynamics for frequency change.
    Hollien H.
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [Abstract] [Full Text] [Related]

  • 11. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK.
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [Abstract] [Full Text] [Related]

  • 12. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria.
    Kelleher JE, Siegmund T, Du M, Naseri E, Chan RW.
    Biomech Model Mechanobiol; 2013 Jun; 12(3):555-67. PubMed ID: 22886592
    [Abstract] [Full Text] [Related]

  • 13. Vibrational dynamics of vocal folds using nonlinear normal modes.
    Pinheiro AP, Kerschen G.
    Med Eng Phys; 2013 Aug; 35(8):1079-88. PubMed ID: 23218815
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A, Fukuda H, Kawaida M, Kanzaki J.
    Eur Arch Otorhinolaryngol; 1996 Aug; 253(6):356-63. PubMed ID: 8858261
    [Abstract] [Full Text] [Related]

  • 16. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA, Devine EE, Jiang JJ, Vamos AC, Tao C.
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Frequency response of synthetic vocal fold models with linear and nonlinear material properties.
    Shaw SM, Thomson SL, Dromey C, Smith S.
    J Speech Lang Hear Res; 2012 Oct; 55(5):1395-406. PubMed ID: 22271874
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.