These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 18191837
1. Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury. Chen Q, Smith GM, Shine HD. Exp Neurol; 2008 Feb; 209(2):497-509. PubMed ID: 18191837 [Abstract] [Full Text] [Related]
2. Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord. Chen Q, Zhou L, Shine HD. J Neurotrauma; 2006 Aug; 23(8):1254-60. PubMed ID: 16928183 [Abstract] [Full Text] [Related]
3. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD. J Neurosci; 2003 Feb 15; 23(4):1424-31. PubMed ID: 12598631 [Abstract] [Full Text] [Related]
4. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord. Chen Q, Shine HD. J Neurosci Res; 2013 Oct 15; 91(10):1280-91. PubMed ID: 23907999 [Abstract] [Full Text] [Related]
5. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. Zhou L, Shine HD. J Neurosci Res; 2003 Oct 15; 74(2):221-6. PubMed ID: 14515351 [Abstract] [Full Text] [Related]
6. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury. Weishaupt N, Mason AL, Hurd C, May Z, Zmyslowski DC, Galleguillos D, Sipione S, Fouad K. Neuroscience; 2014 Jul 11; 272():65-75. PubMed ID: 24814724 [Abstract] [Full Text] [Related]
7. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M. Exp Neurol; 2003 Nov 11; 184(1):97-113. PubMed ID: 14637084 [Abstract] [Full Text] [Related]
8. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. García-Alías G, Petrosyan HA, Schnell L, Horner PJ, Bowers WJ, Mendell LM, Fawcett JW, Arvanian VL. J Neurosci; 2011 Dec 07; 31(49):17788-99. PubMed ID: 22159095 [Abstract] [Full Text] [Related]
9. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. Mahmood A, Wu H, Qu C, Xiong Y, Chopp M. J Neurosurg; 2013 Feb 07; 118(2):381-9. PubMed ID: 23198801 [Abstract] [Full Text] [Related]
10. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Weishaupt N, Hurd C, Wei DZ, Fouad K. Exp Neurol; 2013 Sep 07; 247():241-9. PubMed ID: 23684634 [Abstract] [Full Text] [Related]
11. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Hagg T, Baker KA, Emsley JG, Tetzlaff W. Neuroscience; 2005 Sep 07; 130(4):875-87. PubMed ID: 15652986 [Abstract] [Full Text] [Related]
12. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury. Song W, Amer A, Ryan D, Martin JH. Exp Neurol; 2016 Mar 07; 277():46-57. PubMed ID: 26708732 [Abstract] [Full Text] [Related]
13. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function. Blits B, Dijkhuizen PA, Boer GJ, Verhaagen J. Exp Neurol; 2000 Jul 07; 164(1):25-37. PubMed ID: 10877912 [Abstract] [Full Text] [Related]
14. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. J Neurophysiol; 2013 Oct 07; 110(8):1782-92. PubMed ID: 23864374 [Abstract] [Full Text] [Related]
16. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng LX, Walker MJ, Qu W, Chen C, Liu NK, Han Q, Dai H, Shields LB, Shields CB, Sengelaub DR, Jones KJ, Smith GM, Xu XM. Elife; 2018 Sep 12; 7():. PubMed ID: 30207538 [Abstract] [Full Text] [Related]
17. Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats. Stewart AN, Kendziorski G, Deak ZM, Bartosek NC, Rezmer BE, Jenrow K, Rossignol J, Dunbar GL. Brain Res; 2018 Nov 15; 1699():19-33. PubMed ID: 29883625 [Abstract] [Full Text] [Related]
18. A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury. Liu ZH, Yip PK, Adams L, Davies M, Lee JW, Michael GJ, Priestley JV, Michael-Titus AT. J Neurosci; 2015 Sep 16; 35(37):12733-52. PubMed ID: 26377463 [Abstract] [Full Text] [Related]
19. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI. Fortun J, Puzis R, Pearse DD, Gage FH, Bunge MB. J Neurotrauma; 2009 Jul 16; 26(7):941-53. PubMed ID: 19275471 [Abstract] [Full Text] [Related]
20. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Jiang YQ, Armada K, Martin JH. Exp Neurol; 2019 Nov 16; 321():113015. PubMed ID: 31326353 [Abstract] [Full Text] [Related] Page: [Next] [New Search]