These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
436 related items for PubMed ID: 18192046
1. Secondary neutrons in clinical proton radiotherapy: a charged issue. Brenner DJ, Hall EJ. Radiother Oncol; 2008 Feb; 86(2):165-70. PubMed ID: 18192046 [Abstract] [Full Text] [Related]
2. Should positive phase III clinical trial data be required before proton beam therapy is more widely adopted? No. Suit H, Kooy H, Trofimov A, Farr J, Munzenrider J, DeLaney T, Loeffler J, Clasie B, Safai S, Paganetti H. Radiother Oncol; 2008 Feb; 86(2):148-53. PubMed ID: 18237800 [Abstract] [Full Text] [Related]
4. Secondary neutron doses for several beam configurations for proton therapy. Shin D, Yoon M, Kwak J, Shin J, Lee SB, Park SY, Park S, Kim DY, Cho KH. Int J Radiat Oncol Biol Phys; 2009 May 01; 74(1):260-5. PubMed ID: 19362245 [Abstract] [Full Text] [Related]
5. Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age. Zacharatou Jarlskog C, Paganetti H. Int J Radiat Oncol Biol Phys; 2008 Sep 01; 72(1):228-35. PubMed ID: 18571337 [Abstract] [Full Text] [Related]
7. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy. Athar BS, Paganetti H. Phys Med Biol; 2009 Aug 21; 54(16):4907-26. PubMed ID: 19641238 [Abstract] [Full Text] [Related]
9. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy. Moteabbed M, Geyer A, Drenkhahn R, Bolch WE, Paganetti H. Phys Med Biol; 2012 Jan 21; 57(2):499-515. PubMed ID: 22217682 [Abstract] [Full Text] [Related]
10. Does electron and proton therapy reduce the risk of radiation induced cancer after spinal irradiation for childhood medulloblastoma? A comparative treatment planning study. Mu X, Björk-Eriksson T, Nill S, Oelfke U, Johansson KA, Gagliardi G, Johansson L, Karlsson M, Zackrisson DB. Acta Oncol; 2005 Jan 21; 44(6):554-62. PubMed ID: 16165914 [Abstract] [Full Text] [Related]
11. Basics of particle therapy: introduction to hadrons. Welsh JS. Am J Clin Oncol; 2008 Oct 21; 31(5):493-5. PubMed ID: 18838888 [Abstract] [Full Text] [Related]
12. Spot scanning proton therapy minimizes neutron dose in the setting of radiation therapy administered during pregnancy. Wang X, Poenisch F, Sahoo N, Zhu RX, Lii M, Gillin MT, Li J, Grosshans D. J Appl Clin Med Phys; 2016 Sep 08; 17(5):366-376. PubMed ID: 27685136 [Abstract] [Full Text] [Related]
16. Number of patients potentially eligible for proton therapy. Glimelius B, Ask A, Bjelkengren G, Björk-Eriksson T, Blomquist E, Johansson B, Karlsson M, Zackrisson B. Acta Oncol; 2005 Sep 08; 44(8):836-49. PubMed ID: 16332591 [Abstract] [Full Text] [Related]
19. The potential role of proton beams in radiation oncology. Loeffler JS, Smith AR, Suit HD. Semin Oncol; 1997 Dec 08; 24(6):686-95. PubMed ID: 9422264 [Abstract] [Full Text] [Related]
20. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator. Brenner DJ, Elliston CD, Hall EJ, Paganetti H. Phys Med Biol; 2009 Oct 21; 54(20):6065-78. PubMed ID: 19779218 [Abstract] [Full Text] [Related] Page: [Next] [New Search]