These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


302 related items for PubMed ID: 18193309

  • 1. Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution.
    Prot V, Haaverstad R, Skallerud B.
    Biomech Model Mechanobiol; 2009 Feb; 8(1):43-55. PubMed ID: 18193309
    [Abstract] [Full Text] [Related]

  • 2. Finite element analysis of the mitral valve.
    Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD.
    J Heart Valve Dis; 1993 May; 2(3):326-40. PubMed ID: 8269128
    [Abstract] [Full Text] [Related]

  • 3. Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries.
    Lim KH, Yeo JH, Duran CM.
    J Heart Valve Dis; 2005 May; 14(3):386-92. PubMed ID: 15974534
    [Abstract] [Full Text] [Related]

  • 4. Effects of papillary muscle position on chordal force distribution: an in-vitro study.
    Jimenez JH, Soerensen DD, He Z, Ritchie J, Yoganathan AP.
    J Heart Valve Dis; 2005 May; 14(3):295-302. PubMed ID: 15974521
    [Abstract] [Full Text] [Related]

  • 5. Mechanics of the mitral valve strut chordae insertion region.
    Padala M, Sacks MS, Liou SW, Balachandran K, He Z, Yoganathan AP.
    J Biomech Eng; 2010 Aug; 132(8):081004. PubMed ID: 20670053
    [Abstract] [Full Text] [Related]

  • 6. Differential tension between secondary and primary mitral chordae in an acute in-vivo porcine model.
    Lomholt M, Nielsen SL, Hansen SB, Andersen NT, Hasenkam JM.
    J Heart Valve Dis; 2002 May; 11(3):337-45. PubMed ID: 12056724
    [Abstract] [Full Text] [Related]

  • 7. Effect of strut chordae transection on mitral valve leaflet biomechanics.
    Chen L, May-Newman K.
    Ann Biomed Eng; 2006 Jun; 34(6):917-26. PubMed ID: 16783648
    [Abstract] [Full Text] [Related]

  • 8. Mitral valve finite element modeling: implications of tissues' nonlinear response and annular motion.
    Stevanella M, Votta E, Redaelli A.
    J Biomech Eng; 2009 Dec; 131(12):121010. PubMed ID: 20524733
    [Abstract] [Full Text] [Related]

  • 9. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study.
    Jimenez JH, Soerensen DD, He Z, He S, Yoganathan AP.
    Ann Biomed Eng; 2003 Nov; 31(10):1171-81. PubMed ID: 14649491
    [Abstract] [Full Text] [Related]

  • 10. Non-linear fluid-coupled computational model of the mitral valve.
    Einstein DR, Kunzelman KS, Reinhall PG, Nicosia MA, Cochran RP.
    J Heart Valve Dis; 2005 May; 14(3):376-85. PubMed ID: 15974533
    [Abstract] [Full Text] [Related]

  • 11. Influence of anterior mitral leaflet second-order chordae tendineae on left ventricular systolic function.
    Nielsen SL, Timek TA, Green GR, Dagum P, Daughters GT, Hasenkam JM, Bolger AF, Ingels NB, Miller DC.
    Circulation; 2003 Jul 29; 108(4):486-91. PubMed ID: 12860916
    [Abstract] [Full Text] [Related]

  • 12. Patterns of systolic stress distribution on mitral valve anterior leaflet chordal apparatus. A structural mechanical theoretical analysis.
    Nazari S, Carli F, Salvi S, Banfi C, Aluffi A, Mourad Z, Buniva P, Rescigno G.
    J Cardiovasc Surg (Torino); 2000 Apr 29; 41(2):193-202. PubMed ID: 10901521
    [Abstract] [Full Text] [Related]

  • 13. Effect of cutting second-order chordae on in-vivo anterior mitral leaflet compound curvature.
    Rodriguez F, Langer F, Harrington KB, Tibayan FA, Zasio MK, Liang D, Daughters GT, Ingels NB, Miller DC.
    J Heart Valve Dis; 2005 Sep 29; 14(5):592-601; discussion 601-2. PubMed ID: 16245497
    [Abstract] [Full Text] [Related]

  • 14. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour.
    Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC.
    J Heart Valve Dis; 1993 Mar 29; 2(2):236-44. PubMed ID: 8261162
    [Abstract] [Full Text] [Related]

  • 15. Determination of the pressure required to cause mitral valve failure.
    Espino DM, Hukins DW, Shepherd DE, Watson MA, Buchan K.
    Med Eng Phys; 2006 Jan 29; 28(1):36-41. PubMed ID: 15908258
    [Abstract] [Full Text] [Related]

  • 16. Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.
    Pham T, Kong F, Martin C, Wang Q, Primiano C, McKay R, Elefteriades J, Sun W.
    Cardiovasc Eng Technol; 2017 Mar 29; 8(1):3-16. PubMed ID: 28070866
    [Abstract] [Full Text] [Related]

  • 17. A novel method to measure mitral valve chordal tension.
    He Z, Jowers C.
    J Biomech Eng; 2009 Jan 29; 131(1):014501. PubMed ID: 19045931
    [Abstract] [Full Text] [Related]

  • 18. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans.
    Wang Q, Sun W.
    Ann Biomed Eng; 2013 Jan 29; 41(1):142-53. PubMed ID: 22805982
    [Abstract] [Full Text] [Related]

  • 19. Chordal "translocation" for functional mitral regurgitation with severe valve tenting: an effort to preserve left ventricular structure and function.
    Fukuoka M, Nonaka M, Masuyama S, Shimamoto T, Tambara K, Yoshida H, Ikeda T, Komeda M.
    J Thorac Cardiovasc Surg; 2007 Apr 29; 133(4):1004-11. PubMed ID: 17382642
    [Abstract] [Full Text] [Related]

  • 20. Chordal geometry determines the shape and extent of systolic anterior mitral motion: in vitro studies.
    Cape EG, Simons D, Jimoh A, Weyman AE, Yoganathan AP, Levine RA.
    J Am Coll Cardiol; 1989 May 29; 13(6):1438-48. PubMed ID: 2703621
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.