These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


385 related items for PubMed ID: 18195480

  • 21. Experimental glutamatergic excitotoxicity in rabbit retinal ganglion cells: block by memantine.
    Hare WA, Wheeler L.
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2940-8. PubMed ID: 19136701
    [Abstract] [Full Text] [Related]

  • 22. Ultra-slow oscillatory neuronal activity in the rat olivary pretectal nucleus: comparison with oscillations within the intergeniculate leaflet.
    Szkudlarek HJ, Herdzina O, Lewandowski MH.
    Eur J Neurosci; 2008 May; 27(10):2657-64. PubMed ID: 18547249
    [Abstract] [Full Text] [Related]

  • 23. Effects of newly developed excitatory amino acid antagonists on vestibular type I neurons in the cat.
    Furuya N, Koizimi T, Sebata H.
    Acta Otolaryngol Suppl; 1997 May; 528():52-5. PubMed ID: 9288238
    [Abstract] [Full Text] [Related]

  • 24. Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats.
    Giroux N, Chau C, Barbeau H, Reader TA, Rossignol S.
    J Neurophysiol; 2003 Aug; 90(2):1027-45. PubMed ID: 12904502
    [Abstract] [Full Text] [Related]

  • 25. Effect of NMDA antagonists on the death of cerebellar granule neurons at different ages.
    Alavez S, Blancas S, Morán J.
    Neurosci Lett; 2006 May 08; 398(3):241-5. PubMed ID: 16469441
    [Abstract] [Full Text] [Related]

  • 26. Ionotropic NMDA receptor evokes an excitatory response in superior salivatory nucleus neurons in anaesthetized rats.
    Oskutyte D, Ishizuka K, Satoh Y, Murakami T.
    Auton Neurosci; 2004 Feb 27; 110(2):98-107. PubMed ID: 15046733
    [Abstract] [Full Text] [Related]

  • 27. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?
    Cowley KC, Zaporozhets E, Maclean JN, Schmidt BJ.
    J Neurophysiol; 2005 Dec 27; 94(6):3805-14. PubMed ID: 16120672
    [Abstract] [Full Text] [Related]

  • 28. N-methyl-D-aspartic acid causes relaxation of porcine retinal arterioles through an adenosine receptor-dependent mechanism.
    Holmgaard K, Aalkjaer C, Lambert JD, Bek T.
    Invest Ophthalmol Vis Sci; 2008 Oct 27; 49(10):4590-4. PubMed ID: 18487373
    [Abstract] [Full Text] [Related]

  • 29. Excitatory amino acid receptors in the periaqueductal gray mediate the cardiovascular response evoked by activation of dorsomedial hypothalamic neurons.
    da Silva LG, Menezes RC, Villela DC, Fontes MA.
    Neuroscience; 2006 Oct 27; 139(3):1129-39. PubMed ID: 16458440
    [Abstract] [Full Text] [Related]

  • 30. The role of NMDA and GABAA receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level.
    Lavoute C, Weiss M, Rostain JC.
    Brain Res; 2007 Oct 24; 1176():37-44. PubMed ID: 17900538
    [Abstract] [Full Text] [Related]

  • 31. Ionotropic glutamate receptors mediate excitatory drive to caudal medullary expiratory neurons in the rabbit.
    Bongianni F, Mutolo D, Nardone F, Pantaleo T.
    Brain Res; 2005 Sep 21; 1056(2):145-57. PubMed ID: 16122708
    [Abstract] [Full Text] [Related]

  • 32. Neuroprotection by tosyl-polyamine derivatives through the inhibition of ionotropic glutamate receptors.
    Masuko T, Namiki R, Nemoto Y, Miyake M, Kizawa Y, Suzuki T, Kashiwagi K, Igarashi K, Kusama T.
    J Pharmacol Exp Ther; 2009 Nov 21; 331(2):522-30. PubMed ID: 19644042
    [Abstract] [Full Text] [Related]

  • 33. Role of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors in the cardiovascular effects of L-glutamate microinjection into the hypothalamic paraventricular nucleus of unanesthetized rats.
    Busnardo C, Tavares RF, Corrêa FM.
    J Neurosci Res; 2009 Jul 21; 87(9):2066-77. PubMed ID: 19229989
    [Abstract] [Full Text] [Related]

  • 34. Repeated imipramine administration enhances the effects of NMDA receptor ligands on synchronous activity in rat frontal cortex in vitro.
    Bobula B, Tokarski K, Hess G.
    Pol J Pharmacol; 2001 Jul 21; 53(6):635-9. PubMed ID: 11985338
    [Abstract] [Full Text] [Related]

  • 35. Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet.
    Blasiak T, Lewandowski MH.
    Neuroscience; 2013 Jan 03; 228():315-24. PubMed ID: 23103793
    [Abstract] [Full Text] [Related]

  • 36. Evidence against the presence of NMDA receptors at a central glutamatergic synapse in leeches.
    Wu E.
    Invert Neurosci; 2002 Apr 03; 4(3):157-64. PubMed ID: 12488975
    [Abstract] [Full Text] [Related]

  • 37. Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus.
    Li YF, Jackson KL, Stern JE, Rabeler B, Patel KP.
    Am J Physiol Heart Circ Physiol; 2006 Dec 03; 291(6):H2847-56. PubMed ID: 16877560
    [Abstract] [Full Text] [Related]

  • 38. [The types of respiratory neurons in nucleus paragigantocellularis lateralis in rats and their responses to some medicines].
    Li LH, Zheng Y, Xu ML.
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2001 Feb 03; 17(1):10-3. PubMed ID: 21171428
    [Abstract] [Full Text] [Related]

  • 39. Electrophysiology of optic nerve input to suprachiasmatic nucleus neurons in rats and degus.
    Jiao YY, Rusak B.
    Brain Res; 2003 Jan 17; 960(1-2):142-51. PubMed ID: 12505666
    [Abstract] [Full Text] [Related]

  • 40. The role of GABAergic neuron on NMDA- and SP-induced phase delays in the suprachiasmatic nucleus neuronal activity rhythm in vitro.
    Hamada T, Shibata S.
    Neurosci Lett; 2010 Jan 14; 468(3):344-7. PubMed ID: 19914338
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.