These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Determination of absolute configurations of chiral molecules using ab initio time-dependent Density Functional Theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations? Stephens PJ, McCann DM, Cheeseman JR, Frisch MJ. Chirality; 2005; 17 Suppl():S52-64. PubMed ID: 15747317 [Abstract] [Full Text] [Related]
3. Ab initio determination of optical rotatory dispersion in the conformationally flexible molecule (R)-epichlorohydrin. Tam MC, Crawford TD. J Phys Chem A; 2006 Feb 16; 110(6):2290-8. PubMed ID: 16466267 [Abstract] [Full Text] [Related]
4. Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. McCann DM, Stephens PJ, Cheeseman JR. J Org Chem; 2004 Dec 10; 69(25):8709-17. PubMed ID: 15575747 [Abstract] [Full Text] [Related]
5. Density functional theory calculations of optical rotation: employment of ADZP and its comparison with other basis sets. Neto AC, Jorge FE. Chirality; 2007 Jan 10; 19(1):67-73. PubMed ID: 17089343 [Abstract] [Full Text] [Related]
6. Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules. Autschbach J, Jensen L, Schatz GC, Tse YC, Krykunov M. J Phys Chem A; 2006 Feb 23; 110(7):2461-73. PubMed ID: 16480306 [Abstract] [Full Text] [Related]
7. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. McCann DM, Stephens PJ. J Org Chem; 2006 Aug 04; 71(16):6074-98. PubMed ID: 16872191 [Abstract] [Full Text] [Related]
8. Ab initio optical rotatory dispersion and electronic circular dichroism spectra of (S)-2-chloropropionitrile. Kowalczyk TD, Abrams ML, Crawford TD. J Phys Chem A; 2006 Jun 22; 110(24):7649-54. PubMed ID: 16774210 [Abstract] [Full Text] [Related]
9. Determination of the absolute configuration of [3(2)](1,4)barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism. Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ. J Am Chem Soc; 2004 Jun 23; 126(24):7514-21. PubMed ID: 15198598 [Abstract] [Full Text] [Related]
10. Determination of absolute configuration using optical rotation calculated using density functional theory. Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ, Rosini C. Org Lett; 2002 Dec 26; 4(26):4595-8. PubMed ID: 12489938 [Abstract] [Full Text] [Related]
11. Ab initio prediction of optical rotation: comparison of density functional theory and Hartree-Fock methods for three 2,7,8-trioxabicyclo[3.2.1]octanes. Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ. Chirality; 2002 May 05; 14(4):288-96. PubMed ID: 11968068 [Abstract] [Full Text] [Related]
12. Coupled cluster and density functional theory studies of the vibrational contribution to the optical rotation of (S)-propylene oxide. Kongsted J, Pedersen TB, Jensen L, Hansen AE, Mikkelsen KV. J Am Chem Soc; 2006 Jan 25; 128(3):976-82. PubMed ID: 16417389 [Abstract] [Full Text] [Related]
14. Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane. Tam MC, Russ NJ, Crawford TD. J Chem Phys; 2004 Aug 22; 121(8):3550-7. PubMed ID: 15303920 [Abstract] [Full Text] [Related]
15. Absolute configuration of natural cyclohexene oxides by time dependent density functional theory calculation of the optical rotation: the absolute configuration of (-)-sphaeropsidone and (-)-episphaeropsidone revised. Mennucci B, Claps M, Evidente A, Rosini C. J Org Chem; 2007 Aug 31; 72(18):6680-91. PubMed ID: 17683144 [Abstract] [Full Text] [Related]