These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
899 related items for PubMed ID: 18206907
1. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. Hou T, Zhang W, Case DA, Wang W. J Mol Biol; 2008 Feb 29; 376(4):1201-14. PubMed ID: 18206907 [Abstract] [Full Text] [Related]
2. Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. Hou T, McLaughlin W, Lu B, Chen K, Wang W. J Proteome Res; 2006 Jan 29; 5(1):32-43. PubMed ID: 16396493 [Abstract] [Full Text] [Related]
3. Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-Gaussian processes. Zhou P, Tian F, Chen X, Shang Z. Biopolymers; 2008 Jan 29; 90(6):792-802. PubMed ID: 18814309 [Abstract] [Full Text] [Related]
4. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides. Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause G, Moelling K, Volkmer-Engert R, Oschkinat H. J Mol Biol; 2004 Oct 22; 343(3):703-18. PubMed ID: 15465056 [Abstract] [Full Text] [Related]
5. Factor analysis scales of generalized amino acid information as applied in predicting interactions between the human amphiphysin-1 SH3 domains and their peptide ligands. Liang G, Chen G, Niu W, Li Z. Chem Biol Drug Des; 2008 Apr 22; 71(4):345-51. PubMed ID: 18318694 [Abstract] [Full Text] [Related]
6. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B, Via A, Cestra G, Cesareni G, Helmer-Citterich M. J Mol Biol; 2000 Apr 28; 298(2):313-28. PubMed ID: 10764600 [Abstract] [Full Text] [Related]
7. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G. Biochemistry; 2008 Jan 08; 47(1):267-82. PubMed ID: 18067320 [Abstract] [Full Text] [Related]
8. Toward quantitative characterization of the binding profile between the human amphiphysin-1 SH3 domain and its peptide ligands. He P, Wu W, Wang HD, Yang K, Liao KL, Zhang W. Amino Acids; 2010 Apr 08; 38(4):1209-18. PubMed ID: 19669081 [Abstract] [Full Text] [Related]
9. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. Kim J, Lee CD, Rath A, Davidson AR. J Mol Biol; 2008 Mar 28; 377(3):889-901. PubMed ID: 18280496 [Abstract] [Full Text] [Related]
10. Predicting protein-peptide interactions via a network-based motif sampler. Reiss DJ, Schwikowski B. Bioinformatics; 2004 Aug 04; 20 Suppl 1():i274-82. PubMed ID: 15262809 [Abstract] [Full Text] [Related]
11. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Hou T, Chen K, McLaughlin WA, Lu B, Wang W. PLoS Comput Biol; 2006 Jan 04; 2(1):e1. PubMed ID: 16446784 [Abstract] [Full Text] [Related]
12. Comparative structural and energetic analysis of WW domain-peptide interactions. Schleinkofer K, Wiedemann U, Otte L, Wang T, Krause G, Oschkinat H, Wade RC. J Mol Biol; 2004 Nov 26; 344(3):865-81. PubMed ID: 15533451 [Abstract] [Full Text] [Related]
13. Structural insight into the binding diversity between the human Nck2 SH3 domains and proline-rich proteins. Liu J, Li M, Ran X, Fan JS, Song J. Biochemistry; 2006 Jun 13; 45(23):7171-84. PubMed ID: 16752908 [Abstract] [Full Text] [Related]
14. Recognition of lysine-rich peptide ligands by murine cortactin SH3 domain: CD, ITC, and NMR studies. Rubini C, Ruzza P, Spaller MR, Siligardi G, Hussain R, Udugamasooriya DG, Bellanda M, Mammi S, Borgogno A, Calderan A, Cesaro L, Brunati AM, Donella-Deana A. Biopolymers; 2010 Jun 13; 94(3):298-306. PubMed ID: 19921743 [Abstract] [Full Text] [Related]
15. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions. Schillinger C, Boisguerin P, Krause G. Bioinformatics; 2009 Jul 01; 25(13):1632-9. PubMed ID: 19376827 [Abstract] [Full Text] [Related]
16. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT, Serrano L, Wilmanns M. J Mol Biol; 1998 Aug 21; 281(3):513-21. PubMed ID: 9698566 [Abstract] [Full Text] [Related]
17. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. Hoelz A, Janz JM, Lawrie SD, Corwin B, Lee A, Sakmar TP. J Mol Biol; 2006 Apr 28; 358(2):509-22. PubMed ID: 16527308 [Abstract] [Full Text] [Related]
18. Systematic identification of SH3 domain-mediated human protein-protein interactions by peptide array target screening. Wu C, Ma MH, Brown KR, Geisler M, Li L, Tzeng E, Jia CY, Jurisica I, Li SS. Proteomics; 2007 Jun 28; 7(11):1775-85. PubMed ID: 17474147 [Abstract] [Full Text] [Related]
19. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Henriques DA, Ladbury JE, Jackson RM. Protein Sci; 2000 Oct 28; 9(10):1975-85. PubMed ID: 11106171 [Abstract] [Full Text] [Related]
20. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci; 2000 Nov 28; 9(11):2170-80. PubMed ID: 11152127 [Abstract] [Full Text] [Related] Page: [Next] [New Search]