These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 18214835
1. Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments. Moreno N, González A, Rétaux S. Dev Neurobiol; 2008 Mar; 68(4):504-20. PubMed ID: 18214835 [Abstract] [Full Text] [Related]
2. The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Cobos I, Puelles L, Martínez S. Dev Biol; 2001 Nov 01; 239(1):30-45. PubMed ID: 11784017 [Abstract] [Full Text] [Related]
3. Expression of the genes GAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods. Brox A, Puelles L, Ferreiro B, Medina L. J Comp Neurol; 2003 Jun 30; 461(3):370-93. PubMed ID: 12746875 [Abstract] [Full Text] [Related]
4. Tangentially migrating GABAergic cells of subpallial origin invade massively the pallium in developing sharks. Carrera I, Ferreiro-Galve S, Sueiro C, Anadón R, Rodríguez-Moldes I. Brain Res Bull; 2008 Mar 18; 75(2-4):405-9. PubMed ID: 18331906 [Abstract] [Full Text] [Related]
5. Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus. Moreno N, Domínguez L, Rétaux S, González A. Neuroscience; 2008 Jul 17; 154(4):1423-39. PubMed ID: 18515014 [Abstract] [Full Text] [Related]
6. Defining pallial and subpallial divisions in the developing Xenopus forebrain. Bachy I, Berthon J, Rétaux S. Mech Dev; 2002 Sep 17; 117(1-2):163-72. PubMed ID: 12204256 [Abstract] [Full Text] [Related]
7. LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions. Moreno N, Bachy I, Rétaux S, González A. J Comp Neurol; 2004 Apr 19; 472(1):52-72. PubMed ID: 15024752 [Abstract] [Full Text] [Related]
8. Transcriptional regulation of tangential neuronal migration in the developing forebrain. Chédotal A, Rijli FM. Curr Opin Neurobiol; 2009 Apr 19; 19(2):139-45. PubMed ID: 19428236 [Abstract] [Full Text] [Related]
9. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Quintana-Urzainqui I, Rodríguez-Moldes I, Mazan S, Candal E. Brain Struct Funct; 2015 Sep 19; 220(5):2905-26. PubMed ID: 25079345 [Abstract] [Full Text] [Related]
10. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. Brox A, Puelles L, Ferreiro B, Medina L. J Comp Neurol; 2004 Jul 05; 474(4):562-77. PubMed ID: 15174073 [Abstract] [Full Text] [Related]
11. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. Abellán A, Medina L. J Comp Neurol; 2009 Aug 01; 515(4):465-501. PubMed ID: 19459222 [Abstract] [Full Text] [Related]
12. Anuran olfactory bulb organization: embryology, neurochemistry and hodology. Moreno N, Morona R, López JM, Dominguez L, Muñoz M, González A. Brain Res Bull; 2008 Mar 18; 75(2-4):241-5. PubMed ID: 18331878 [Abstract] [Full Text] [Related]
13. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Corbin JG, Nery S, Fishell G. Nat Neurosci; 2001 Nov 18; 4 Suppl():1177-82. PubMed ID: 11687827 [Abstract] [Full Text] [Related]
14. Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes. Abellán A, Legaz I, Vernier B, Rétaux S, Medina L. J Comp Neurol; 2009 Sep 20; 516(3):166-86. PubMed ID: 19598282 [Abstract] [Full Text] [Related]
15. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution. van den Akker WM, Brox A, Puelles L, Durston AJ, Medina L. J Comp Neurol; 2008 Jan 10; 506(2):211-23. PubMed ID: 18022953 [Abstract] [Full Text] [Related]
16. How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish. Mione M, Baldessari D, Deflorian G, Nappo G, Santoriello C. Dev Neurosci; 2008 Jan 10; 30(1-3):65-81. PubMed ID: 18075256 [Abstract] [Full Text] [Related]
17. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. Moreno N, Morona R, López JM, González A. J Comp Neurol; 2010 Dec 15; 518(24):4877-902. PubMed ID: 21031557 [Abstract] [Full Text] [Related]
18. Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area. Puelles L, Morales-Delgado N, Merchán P, Castro-Robles B, Martínez-de-la-Torre M, Díaz C, Ferran JL. Brain Struct Funct; 2016 Jul 15; 221(6):3027-65. PubMed ID: 26189100 [Abstract] [Full Text] [Related]
19. Neurotransmitters regulate cell migration in the telencephalon. Heng JI, Moonen G, Nguyen L. Eur J Neurosci; 2007 Aug 15; 26(3):537-46. PubMed ID: 17686035 [Abstract] [Full Text] [Related]
20. Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Cobos I, Shimamura K, Rubenstein JL, Martínez S, Puelles L. Dev Biol; 2001 Nov 01; 239(1):46-67. PubMed ID: 11784018 [Abstract] [Full Text] [Related] Page: [Next] [New Search]