These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


360 related items for PubMed ID: 18216784

  • 1. A fundamental avian wing-stroke provides a new perspective on the evolution of flight.
    Dial KP, Jackson BE, Segre P.
    Nature; 2008 Feb 21; 451(7181):985-9. PubMed ID: 18216784
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW, Dial KP.
    J Exp Biol; 2007 May 21; 210(Pt 10):1742-51. PubMed ID: 17488937
    [Abstract] [Full Text] [Related]

  • 4. Wing-assisted incline running and the evolution of flight.
    Dial KP.
    Science; 2003 Jan 17; 299(5605):402-4. PubMed ID: 12532020
    [Abstract] [Full Text] [Related]

  • 5. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K, Birkmeyer P, Dudley R, Fearing RS.
    Bioinspir Biomim; 2011 Dec 17; 6(4):046008. PubMed ID: 22004831
    [Abstract] [Full Text] [Related]

  • 6. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E, Mouret JB, Doncieux S, Meyer JA.
    Bioinspir Biomim; 2007 Dec 17; 2(4):65-82. PubMed ID: 18037730
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. A critical ligamentous mechanism in the evolution of avian flight.
    Baier DB, Gatesy SM, Jenkins FA.
    Nature; 2007 Jan 18; 445(7125):307-10. PubMed ID: 17173029
    [Abstract] [Full Text] [Related]

  • 10. The aerodynamics of hovering flight in Drosophila.
    Fry SN, Sayaman R, Dickinson MH.
    J Exp Biol; 2005 Jun 18; 208(Pt 12):2303-18. PubMed ID: 15939772
    [Abstract] [Full Text] [Related]

  • 11. Kinematics and power requirements of ascending and descending flight in the pigeon (Columba livia).
    Berg AM, Biewener AA.
    J Exp Biol; 2008 Apr 18; 211(Pt 7):1120-30. PubMed ID: 18344487
    [Abstract] [Full Text] [Related]

  • 12. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO, Pick S.
    J Exp Biol; 2007 Apr 18; 210(Pt 8):1362-77. PubMed ID: 17401119
    [Abstract] [Full Text] [Related]

  • 13. Origin of flight: Could 'four-winged' dinosaurs fly?
    Padian K, Dial KP.
    Nature; 2005 Nov 17; 438(7066):E3; discussion E3-4. PubMed ID: 16292258
    [Abstract] [Full Text] [Related]

  • 14. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y, Shen GX.
    J Exp Biol; 2008 Apr 17; 211(Pt 8):1221-30. PubMed ID: 18375846
    [Abstract] [Full Text] [Related]

  • 15. Simulating avian wingbeat kinematics.
    Parslew B, Crowther WJ.
    J Biomech; 2010 Dec 01; 43(16):3191-8. PubMed ID: 20732684
    [Abstract] [Full Text] [Related]

  • 16. When vortices stick: an aerodynamic transition in tiny insect flight.
    Miller LA, Peskin CS.
    J Exp Biol; 2004 Aug 01; 207(Pt 17):3073-88. PubMed ID: 15277562
    [Abstract] [Full Text] [Related]

  • 17. Animal flight dynamics II. Longitudinal stability in flapping flight.
    Taylor GK, Thomas AL.
    J Theor Biol; 2002 Feb 07; 214(3):351-70. PubMed ID: 11846595
    [Abstract] [Full Text] [Related]

  • 18. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ.
    J Exp Biol; 2004 Nov 07; 207(Pt 24):4299-323. PubMed ID: 15531651
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.