These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 18219578

  • 1. Linearity and dissociative antigen noise analyses of competitive microfluidic heterogeneous immunoadsorption.
    Zhao S, Wang W, Li Z.
    Biomed Microdevices; 2008 Aug; 10(4):519-29. PubMed ID: 18219578
    [Abstract] [Full Text] [Related]

  • 2. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH, Hong JW, Lee DS, Yoon HC.
    Anal Chim Acta; 2007 Feb 28; 585(1):1-10. PubMed ID: 17386640
    [Abstract] [Full Text] [Related]

  • 3. Dynamic protein adsorption in microchannels by "stop-flow" and continuous flow.
    Lionello A, Josserand J, Jensen H, Girault HH.
    Lab Chip; 2005 Oct 28; 5(10):1096-103. PubMed ID: 16175266
    [Abstract] [Full Text] [Related]

  • 4. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP.
    Lab Chip; 2008 Apr 28; 8(4):565-72. PubMed ID: 18369511
    [Abstract] [Full Text] [Related]

  • 5. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M, Wright PC, McArthur SL.
    Electrophoresis; 2009 Jun 28; 30(11):1877-87. PubMed ID: 19517430
    [Abstract] [Full Text] [Related]

  • 6. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L, Ren CL.
    Anal Chem; 2006 Sep 01; 78(17):6215-22. PubMed ID: 16944904
    [Abstract] [Full Text] [Related]

  • 7. Micropump based on electroosmosis of the second kind.
    Mishchuk NA, Heldal T, Volden T, Auerswald J, Knapp H.
    Electrophoresis; 2009 Oct 01; 30(20):3499-506. PubMed ID: 19784952
    [Abstract] [Full Text] [Related]

  • 8. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K, Sugiura S, Kanamori T.
    Lab Chip; 2009 Jun 21; 9(12):1763-72. PubMed ID: 19495461
    [Abstract] [Full Text] [Related]

  • 9. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ, Kim SM, Littrell RJ, Hasselbrink EF.
    Lab Chip; 2007 Jul 21; 7(7):898-907. PubMed ID: 17594010
    [Abstract] [Full Text] [Related]

  • 10. Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip.
    Hu G, Gao Y, Li D.
    Biosens Bioelectron; 2007 Feb 15; 22(7):1403-9. PubMed ID: 16879959
    [Abstract] [Full Text] [Related]

  • 11. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO, Markesteijn AP, Kutchoukov VG, Piciu O, Bossche A, Westerweel J, Garini Y, Young IT.
    Lab Chip; 2005 Oct 15; 5(10):1067-74. PubMed ID: 16175262
    [Abstract] [Full Text] [Related]

  • 12. ac electroosmosis in rectangular microchannels.
    Campisi M, Accoto D, Dario P.
    J Chem Phys; 2005 Nov 22; 123(20):204724. PubMed ID: 16351310
    [Abstract] [Full Text] [Related]

  • 13. Spontaneous, oscillatory liquid transport in surface tension-confined microfluidics.
    Chao SH, Meldrum DR.
    Lab Chip; 2009 Apr 07; 9(7):867-9. PubMed ID: 19294295
    [Abstract] [Full Text] [Related]

  • 14. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength.
    Chen L, Conlisk AT.
    Biomed Microdevices; 2009 Feb 07; 11(1):251-8. PubMed ID: 18850273
    [Abstract] [Full Text] [Related]

  • 15. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D, Yang C, Miao J, Lam Y, Huang X.
    Electrophoresis; 2009 Sep 07; 30(18):3144-52. PubMed ID: 19764063
    [Abstract] [Full Text] [Related]

  • 16. Electroosmotic guiding of sample flows in a laminar flow chamber.
    Besselink GA, Vulto P, Lammertink RG, Schlautmann S, van den Berg A, Olthuis W, Engbers GH, Schasfoort RB.
    Electrophoresis; 2004 Nov 07; 25(21-22):3705-11. PubMed ID: 15565693
    [Abstract] [Full Text] [Related]

  • 17. Modeling of nucleic acid adsorption on 3D prisms in microchannels.
    Hu Y, Li D.
    Anal Chim Acta; 2007 Jan 02; 581(1):42-52. PubMed ID: 17386424
    [Abstract] [Full Text] [Related]

  • 18. Simultaneous observation of enzyme surface diffusion and surface reaction using microfluidic patterning of substrate surfaces.
    Roy S, Thomas JM, Holmes EA, Kellis JT, Poulose AJ, Robertson CR, Gast AP.
    Anal Chem; 2005 Dec 15; 77(24):8146-50. PubMed ID: 16351167
    [Abstract] [Full Text] [Related]

  • 19. Measurement of the surface concentration for bioassay kinetics in microchannels.
    Bancaud A, Wagner G, Dorfman KD, Viovy JL.
    Anal Chem; 2005 Feb 01; 77(3):833-9. PubMed ID: 15679351
    [Abstract] [Full Text] [Related]

  • 20. A linear dilution microfluidic device for cytotoxicity assays.
    Walker GM, Monteiro-Riviere N, Rouse J, O'Neill AT.
    Lab Chip; 2007 Feb 01; 7(2):226-32. PubMed ID: 17268625
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.