These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 18221760

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Antidiabetic Stilbenes from Peony Seeds with PTP1B, α-Glucosidase, and DPPIV Inhibitory Activities.
    Zhang CC, Geng CA, Huang XY, Zhang XM, Chen JJ.
    J Agric Food Chem; 2019 Jun 19; 67(24):6765-6772. PubMed ID: 31180676
    [Abstract] [Full Text] [Related]

  • 29. Effect of Ficus racemosa stem bark on the activities of carbohydrate hydrolyzing enzymes: an in vitro study.
    Ahmed F, Urooj A.
    Pharm Biol; 2010 May 19; 48(5):518-23. PubMed ID: 20645793
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Mulberry leaf extract reduces postprandial hyperglycemia with few side effects by inhibiting α-glucosidase in normal rats.
    Kim GN, Kwon YI, Jang HD.
    J Med Food; 2011 May 19; 14(7-8):712-7. PubMed ID: 21631361
    [Abstract] [Full Text] [Related]

  • 32. Pancreatic lipase inhibitory stilbenoids from the roots of Vitis vinifera.
    Kim YM, Lee EW, Eom SH, Kim TH.
    Int J Food Sci Nutr; 2014 Feb 19; 65(1):97-100. PubMed ID: 24020412
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris.
    Nurul Islam M, Jung HA, Sohn HS, Kim HM, Choi JS.
    Arch Pharm Res; 2013 May 19; 36(5):542-52. PubMed ID: 23435948
    [Abstract] [Full Text] [Related]

  • 35. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors.
    Xie W, Tanabe G, Akaki J, Morikawa T, Ninomiya K, Minematsu T, Yoshikawa M, Wu X, Muraoka O.
    Bioorg Med Chem; 2011 Mar 15; 19(6):2015-22. PubMed ID: 21345683
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Chip-based drug screening for inhibiting α-glucosidase.
    Chen CC, Chuang PH, Chen YS, Yao CH, Chen HM.
    Fitoterapia; 2011 Dec 15; 82(8):1249-57. PubMed ID: 21907768
    [Abstract] [Full Text] [Related]

  • 40. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro.
    Ademiluyi AO, Oboh G.
    J Basic Clin Physiol Pharmacol; 2012 Jan 19; 23(1):17-25. PubMed ID: 22865445
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.