These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


597 related items for PubMed ID: 18225917

  • 1. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA, Marshall CB, Lin FH, Campbell RL, Davies PL.
    Biochemistry; 2008 Feb 19; 47(7):2051-63. PubMed ID: 18225917
    [Abstract] [Full Text] [Related]

  • 2. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix.
    Lin FH, Davies PL, Graham LA.
    Biochemistry; 2011 May 31; 50(21):4467-78. PubMed ID: 21486083
    [Abstract] [Full Text] [Related]

  • 3. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.
    Patel SN, Graether SP.
    Biochem Cell Biol; 2010 Apr 31; 88(2):223-9. PubMed ID: 20453925
    [Abstract] [Full Text] [Related]

  • 4. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K, Wasserman SS, Jeronimo PS, Graham LA, Davies PL.
    FEBS J; 2016 Apr 31; 283(8):1504-15. PubMed ID: 26896764
    [Abstract] [Full Text] [Related]

  • 5. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein.
    Mok YF, Lin FH, Graham LA, Celik Y, Braslavsky I, Davies PL.
    Biochemistry; 2010 Mar 23; 49(11):2593-603. PubMed ID: 20158269
    [Abstract] [Full Text] [Related]

  • 6. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze.
    Chao H, Hodges RS, Kay CM, Gauthier SY, Davies PL.
    Protein Sci; 1996 Jun 23; 5(6):1150-6. PubMed ID: 8762146
    [Abstract] [Full Text] [Related]

  • 7. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL.
    Biochem J; 2008 Apr 01; 411(1):171-80. PubMed ID: 18095937
    [Abstract] [Full Text] [Related]

  • 8. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H, Sönnichsen FD, DeLuca CI, Sykes BD, Davies PL.
    Protein Sci; 1994 Oct 01; 3(10):1760-9. PubMed ID: 7849594
    [Abstract] [Full Text] [Related]

  • 9. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB, Tomczak MM, Gauthier SY, Kuiper MJ, Lankin C, Walker VK, Davies PL.
    Biochemistry; 2004 Jan 13; 43(1):148-54. PubMed ID: 14705940
    [Abstract] [Full Text] [Related]

  • 10. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL.
    J Mol Biol; 2012 Mar 09; 416(5):713-24. PubMed ID: 22306740
    [Abstract] [Full Text] [Related]

  • 11. Hyperactive antifreeze protein in flounder species. The sole freeze protectant in American plaice.
    Gauthier SY, Marshall CB, Fletcher GL, Davies PL.
    FEBS J; 2005 Sep 09; 272(17):4439-49. PubMed ID: 16128813
    [Abstract] [Full Text] [Related]

  • 12. Antifreeze protein gene expression in winter flounder pre-hatch embryos: implications for cryopreservation.
    Young HM, Fletcher GL.
    Cryobiology; 2008 Oct 09; 57(2):84-90. PubMed ID: 18653179
    [Abstract] [Full Text] [Related]

  • 13. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL.
    Cryobiology; 2006 Oct 09; 53(2):229-39. PubMed ID: 16887111
    [Abstract] [Full Text] [Related]

  • 14. Effect of a mutation on the structure and dynamics of an alpha-helical antifreeze protein in water and ice.
    Graether SP, Slupsky CM, Sykes BD.
    Proteins; 2006 May 15; 63(3):603-10. PubMed ID: 16437556
    [Abstract] [Full Text] [Related]

  • 15. Solution structure of a recombinant type I sculpin antifreeze protein.
    Kwan AH, Fairley K, Anderberg PI, Liew CW, Harding MM, Mackay JP.
    Biochemistry; 2005 Feb 15; 44(6):1980-8. PubMed ID: 15697223
    [Abstract] [Full Text] [Related]

  • 16. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC, Yaish MW, Griffith M, McConkey BJ.
    Nat Biotechnol; 2006 Jul 15; 24(7):852-5. PubMed ID: 16823370
    [Abstract] [Full Text] [Related]

  • 17. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
    Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL.
    Nature; 2000 Jul 20; 406(6793):325-8. PubMed ID: 10917537
    [Abstract] [Full Text] [Related]

  • 18. Ice-binding structure and mechanism of an antifreeze protein from winter flounder.
    Sicheri F, Yang DS.
    Nature; 1995 Jun 01; 375(6530):427-31. PubMed ID: 7760940
    [Abstract] [Full Text] [Related]

  • 19. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study.
    Nada H, Furukawa Y.
    J Phys Chem B; 2008 Jun 12; 112(23):7111-9. PubMed ID: 18476736
    [Abstract] [Full Text] [Related]

  • 20. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A, Zhorov BS, Yang DS.
    Protein Sci; 2004 Jun 12; 13(6):1524-37. PubMed ID: 15152087
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.