These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 1824243

  • 1. A study on the catalytic performance of lipase in reverse micelles.
    Xu J, Mao Q, Ying X, Hu Y.
    Chin J Biotechnol; 1991; 7(4):301-7. PubMed ID: 1824243
    [Abstract] [Full Text] [Related]

  • 2. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles.
    Han D, Rhee JS.
    Biotechnol Bioeng; 1986 Aug; 28(8):1250-5. PubMed ID: 18555453
    [Abstract] [Full Text] [Related]

  • 3. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions.
    Abuin E, Lissi E, Solar C.
    J Colloid Interface Sci; 2005 Mar 01; 283(1):87-93. PubMed ID: 15694427
    [Abstract] [Full Text] [Related]

  • 4. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1.
    Quyen DT, Giang Le TT, Nguyen TT, Oh TK, Lee JK.
    Protein Expr Purif; 2005 Jan 01; 39(1):97-106. PubMed ID: 15596365
    [Abstract] [Full Text] [Related]

  • 5. Kinetics, mechanism, and time course analysis of lipase-catalyzed hydrolysis of high concentration olive oil in AOT-isooctane reversed micelles.
    Tsai SW, Chiang CL.
    Biotechnol Bioeng; 1991 Jun 20; 38(2):206-11. PubMed ID: 18600751
    [Abstract] [Full Text] [Related]

  • 6. Activity of Lipase in Reversed Micelles.
    Lu H, Fan PC.
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 1999 Jun 20; 31(4):469-471. PubMed ID: 12115008
    [Abstract] [Full Text] [Related]

  • 7. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A, Das D, Mitra RN, Das PK.
    J Colloid Interface Sci; 2005 Sep 15; 289(2):566-73. PubMed ID: 16112238
    [Abstract] [Full Text] [Related]

  • 8. Characterization of lipase in reversed micelles formulated with cibacron blue F-3GA modified span 85.
    Zhang DH, Guo Z, Dong XY, Sun Y.
    Biotechnol Prog; 2007 Sep 15; 23(1):108-15. PubMed ID: 17269677
    [Abstract] [Full Text] [Related]

  • 9. Choline acetate enhanced the catalytic performance of Candida rogusa lipase in AOT reverse micelles.
    Xue L, Zhao Y, Yu L, Sun Y, Yan K, Li Y, Huang X, Qu Y.
    Colloids Surf B Biointerfaces; 2013 May 01; 105():81-6. PubMed ID: 23352950
    [Abstract] [Full Text] [Related]

  • 10. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by immobilized Candida rugosa lipase.
    Okada T, Morrissey MT.
    J Food Sci; 2008 Apr 01; 73(3):C146-50. PubMed ID: 18387091
    [Abstract] [Full Text] [Related]

  • 11. Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135.
    Romero CM, Baigori MD, Pera LM.
    Appl Microbiol Biotechnol; 2007 Sep 01; 76(4):861-6. PubMed ID: 17594086
    [Abstract] [Full Text] [Related]

  • 12. Characteristics of immobilized lipase-catalyzed hydrolysis of olive oil of high concentration in reverse phase system.
    Kang ST, Rhee JS.
    Biotechnol Bioeng; 1989 May 01; 33(11):1469-76. PubMed ID: 18587887
    [Abstract] [Full Text] [Related]

  • 13. Activation of lignin peroxidase in organic media by reversed micelles.
    Kimura M, Michizoe J, Oakazaki SY, Furusaki S, Goto M, Tanaka H, Wariishi H.
    Biotechnol Bioeng; 2004 Nov 20; 88(4):495-501. PubMed ID: 15459910
    [Abstract] [Full Text] [Related]

  • 14. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study.
    Yeşiloğlu Y, Şit L.
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug 20; 39(4):247-51. PubMed ID: 21117873
    [Abstract] [Full Text] [Related]

  • 15. Improvement in enzyme activity and stability by addition of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)sulfosuccinate/isooctane reverse micellar system.
    Talukder MM, Takeyama T, Hayashi Y, Wu JC, Kawanishi T, Shimizu N, Ogino C.
    Appl Biochem Biotechnol; 2003 Aug 20; 110(2):101-12. PubMed ID: 14515025
    [Abstract] [Full Text] [Related]

  • 16. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D, Sen R, Basu JK, De S.
    Bioresour Technol; 2010 Jan 20; 101(1):6-13. PubMed ID: 19717301
    [Abstract] [Full Text] [Related]

  • 17. Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20.
    Liu CH, Chang JS.
    Bioresour Technol; 2008 Apr 20; 99(6):1616-22. PubMed ID: 17543520
    [Abstract] [Full Text] [Related]

  • 18. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester.
    Zhu S, Wu Y, Yu Z.
    J Biotechnol; 2005 Apr 06; 116(4):397-401. PubMed ID: 15748766
    [Abstract] [Full Text] [Related]

  • 19. Partially purified Carica papaya lipase: a versatile biocatalyst for the hydrolytic resolution of (R,S)-2-arylpropionic thioesters in water-saturated organic solvents.
    Ng IS, Tsai SW.
    Biotechnol Bioeng; 2005 Jul 05; 91(1):106-13. PubMed ID: 15918166
    [Abstract] [Full Text] [Related]

  • 20. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions. I. Hydrolysis of 2-naphthyl acetate catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulphosuccinate (AOT)/buffer/heptane.
    Aguilar LF, Abuin E, Lissi E.
    Arch Biochem Biophys; 2001 Apr 15; 388(2):231-6. PubMed ID: 11368159
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.