These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


416 related items for PubMed ID: 18246973

  • 21. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep.
    Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C.
    J Neurosci; 2008 Apr 09; 28(15):4088-95. PubMed ID: 18400908
    [Abstract] [Full Text] [Related]

  • 22. Selective sleep deprivation after daily torpor in the Djungarian hamster.
    Palchykova S, Deboer T, Tobler I.
    J Sleep Res; 2002 Dec 09; 11(4):313-9. PubMed ID: 12464099
    [Abstract] [Full Text] [Related]

  • 23. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
    Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G.
    J Neurosci; 2017 Sep 20; 37(38):9132-9148. PubMed ID: 28821651
    [Abstract] [Full Text] [Related]

  • 24. Sleep homeostasis in the rat is preserved during chronic sleep restriction.
    Leemburg S, Vyazovskiy VV, Olcese U, Bassetti CL, Tononi G, Cirelli C.
    Proc Natl Acad Sci U S A; 2010 Sep 07; 107(36):15939-44. PubMed ID: 20696898
    [Abstract] [Full Text] [Related]

  • 25. Period-amplitude analysis reveals wake-dependent changes in the electroencephalogram during sleep deprivation.
    Ehlen JC, Jefferson F, Brager AJ, Benveniste M, Paul KN.
    Sleep; 2013 Nov 01; 36(11):1723-35. PubMed ID: 24179307
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Characteristic changes in the slow cortical waves after a 6-h sleep deprivation in rat.
    Hajnik T, Tóth A, Détári L.
    Brain Res; 2013 Mar 21; 1501():1-11. PubMed ID: 23333371
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat.
    Yasenkov R, Deboer T.
    Neuroscience; 2011 Apr 28; 180():212-21. PubMed ID: 21303684
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Slow waves in the sleep electroencephalogram after daily torpor are homeostatically regulated.
    Deboer T, Tobler I.
    Neuroreport; 2000 Mar 20; 11(4):881-5. PubMed ID: 10757538
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Complex propagation patterns characterize human cortical activity during slow-wave sleep.
    Hangya B, Tihanyi BT, Entz L, Fabó D, Erőss L, Wittner L, Jakus R, Varga V, Freund TF, Ulbert I.
    J Neurosci; 2011 Jun 15; 31(24):8770-9. PubMed ID: 21677161
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.
    Dash MB, Tononi G, Cirelli C.
    Sleep; 2012 Jul 01; 35(7):909-19. PubMed ID: 22754037
    [Abstract] [Full Text] [Related]

  • 38. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV, Tobler I.
    Brain Res; 2005 Jul 19; 1050(1-2):64-71. PubMed ID: 15975563
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D, Lesku JA, Rattenborg NC.
    J Sleep Res; 2008 Jun 19; 17(2):140-53. PubMed ID: 18321247
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.